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Statistical Monitoring of Railway Ballast

Why SPC of railway ballast?

Source: www.erdwissen.ch

Technical aspect
I Forces act on the track bed
I Attrition

I Operating risk!

Economic aspect

I Life cycle costs determined by
cost of maintenance

I Maintenance operations:
temporary track closure and
downtime costs

Quality of the material

I Geometry
I Rock type
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Why SPC of railway ballast?

Problem of determining geometry,
rock type, mechanical properties
(abrasion, fragmentation, resistence
to wear)

Manual tests time consuming
and expensive

Laboratory for mechanical
properties (LA value, other
measures)
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Why SPC of railway ballast?

www.pavementinteractive.org

Problem of determining geometry,
rock type, mechanical properties
(abrasion, fragmentation, resistence
to wear)

Manual tests time consuming
and expensive

Laboratory for mechanical
properties (LA value, other
measures)

Objective: Replace manual tests by
statistical prediction
(= “virtual testing”)
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Virtual testing

www.pavementinteractive.org

Major task:
Prediction of mechanical properties
Y (for example LA value)

I Rock type X1

I Shape X2

I Size X3

I Angularity X4

Special issues of measurement

I Geometric and spectroscopic
features (predictors) are measured
particlewise, not linked

I Mechanical properties Y are
measured samplewise (several
hundered particles
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Virtual testing
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Compositional data approach

Aggregation of particlewise geometric property Xi for
sample j = 1, 2, . . . to the samplewise feature
pi = (pi1, pi2, . . . , piL) with

L∑
j=1

pij = 1

Raw data are continuous features: no direct aggregation!
I Cluster analysis to determine geometric similarity classes

and classification of new sample into these classes
I Classification of spectroscopic data into rock classes
I Determine distribution vectors qi for rock composition

and pi for geometric composition

Predictors (and possibly response variable) are
compositional vectors
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Compositional data versus multivariate data

Negative bias: For X = (X1, . . . ,XL) with
L∑

i=1

Xi = 1

Cov(X1,
L∑

i=1

Xi) = Cov(X1, 1) = 0

L∑
i=2

Cov(X1,Xi) = −Var(X1)

Spurious correlation

Euclidean distance can be larger in a
subspace than for the full composition

Variance matrices are singular due to the
constant-sum constraint

Univariate analyis makes no sense, since the
value of one component only meaningful in
relation to the other components
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Compositional data versus multivariate data

Negative bias

Spurious correlation

Euclidean distance can be larger in a
subspace than for the full composition

Variance matrices are singular due to the
constant-sum constraint

Univariate analyis makes no sense, since the
value of one component only meaningful in
relation to the other components

Compositional data analysis!

Pioneer

Prof. Aitchison

Source: Wikipedia
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Isometric log-ratio (ilr) transform

Let p be a compositional data vector in the simplex

SL =

{
p = (p1, . . . , pL) ∈ [0, 1]L

∣∣∣∣∣
L∑

i=1

pi = 1

}
ilr transformation: ilr : SL −→ RL−1

x = ilr(p) = ln(p)Ψ,

Now work with coordinates x ∈ RL−1

Inverse transform ilr−1

ilr−1(x) = C(exp(x ·Ψ′)),

where C is the closure operations, i.e. C(y) = 1∑
i

yi
y
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∣∣∣∣∣
L∑

i=1
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}
ilr transformation: ilr : SL −→ RL−1

x = ilr(p) = ln(p)Ψ,

where Ψ is the L× (L− 1) Helmert matrix with
normalised columns

Ψ =



L−1√
L(L−1)

0 · · · 0 0

− 1√
L(L−1)

L−2√
(L−1)(L−2)

· · · 0 0

...
...

...
...

...
−1√
L(L−1)

−1√
(L−1)(L−2)

· · · −1√
6

−1√
2


Now work with coordinates x ∈ RL−1

Inverse transform ilr−1

ilr−1(x) = C(exp(x ·Ψ′)),
where C is the closure operations, i.e. C(y) = 1∑

i

yi
y
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Statistical modelling
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Statistical prediction
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Statistical monitoring system
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Novelty detection

New spectrographic varieties −→ wrong prediction of
spectroscopic composition and of mechanical properties

Novelty detection by means of one-class support vector
machines:

I Extract a subset of ‘regular’ data points from a given
random dataset

I Dataset contains reflectance spectra

sijk2(t) ≈ ŝijk2(t) =
D∑
l=1

λijk2l ul(t) = λ′ijk2 u(t) ,

I PC transformation of the basis coefficients
z′ijk2 = (zijk21, . . . , zijk2E )

Vera Hofer Virtual Testing of Railway Ballast



Statistical Monitoring of Railway Ballast

Novelty detection

New spectrographic varieties −→ wrong prediction of
spectroscopic composition and of mechanical properties

Novelty detection by means of one-class support vector
machines:

I Extract a subset of ‘regular’ data points from a given
random dataset

I Dataset contains reflectance spectra

sijk2(t) ≈ ŝijk2(t) =
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One-class support vector machines

Decision rule

gi(z) = sign

 Ni∑
j=1

n′ij∑
k2=1

θijk2 K (z, zijk2)− θ0


with gi(z) = +1 for ‘regular’ data and gi(z) = −1 for
‘novel’ data is estimated.

K (·, ·) denotes the radial kernel

K (z, zijk2) = eδ ‖z−zijk2
‖2

with parameter δ.
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One-class support vector machines

Solve the minimisation problem

min
θi

1

2

Ni∑
j , j ′=1

n′ij∑
k2,k ′2=1

θijk2θij ′k ′2K (zijk2 , zij ′k ′2)

s.t.

Ni∑
j=1

n′ij∑
k2=1

θijk2 = 1

0 ≤ θijk2 ≤
1

ρ n′i
n′i =

Ni∑
j=1

n′ij
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One-class support vector machines

Solve the minimisation problem

min
θi

1

2

Ni∑
j , j ′=1

n′ij∑
k2,k ′2=1

θijk2θij ′k ′2K (zijk2 , zij ′k ′2)

s.t.

Ni∑
j=1

n′ij∑
k2=1

θijk2 = 1

0 ≤ θijk2 ≤
1

ρ n′i
n′i =

Ni∑
j=1

n′ij

ρ ∈ ]0, 1] is an upper bound on the number of training points
outside the location of ‘regular’ data points.
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One-class support vector machines

Solve the minimisation problem

min
θi

1

2

Ni∑
j , j ′=1

n′ij∑
k2,k ′2=1

θijk2θij ′k ′2K (zijk2 , zij ′k ′2)

s.t.

Ni∑
j=1

n′ij∑
k2=1

θijk2 = 1

0 ≤ θijk2 ≤
1

ρ n′i
n′i =

Ni∑
j=1

n′ij

θ0 is derived for a point with 0 < θijk2 <
1
ρ n′i

as

θ0 =
Ni∑
j ′=1

n′ij∑
k ′2=1

θij ′k ′2 K (zij ′k ′2 , zijk2) .
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Statistical monitoring system
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