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Study on Tests for Normality of Residuals in
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Abstract

The application of goodness-of-fit (GoF) tests in linear regression modeling is
a common practice in applied statistical sciences. For instance, in simple linear re-
gression the assumption of normality of residuals is always necessary to test before
making any further inferences. The growing popularity of the use of powerful and
efficient empirical likelihood ratio (ELR) based GoF tests in checking for departures
from normality in various continuous distributions can be of great use in checking
for distributional assumptions of residuals in linear models. Motivated by the attrac-
tive properties of the ELR based GoF tests the researchers conducted an extensive
Type I error rate assessment as well as a Monte Carlo power comparison of selected
ELR GoF tests with well-known existing tests against symmetric and asymmetric
alternative OLS and BLUS residuals. Under the simulated scenarios, all the studied
tests have good control of Type I error rates. The Monte Carlo experiments revealed
the superiority of the ELR GoF tests under certain alternatives of both the OLS and
BLUS residuals. Our findings also demonstrated the superiority of OLS over BLUS
residuals when one is testing for normality in simple linear regression models. A
real data study further revealed the applicability of the ELR based GoF tests in test-
ing normality of residuals in linear regression models.

1 Introduction
The importance of distributional assumptions, especially normality is crucial since it is
a fundamental assumption in residual analysis for linear regression models. When such
distributional assumptions are not fulfilled, then the inferences and interpretation may
not be reliable or valid. In testing for normality, the most commonly used goodness-
of-fit (GoF) tests includes the Shapiro-Wilk (SW) test (Shapiro and Wilk, 1965), the
modified Kolmogorov-Smirnov (LL) test (Lilliefors, 1967), the Anderson and Darling
(AD) test (Anderson and Darling, 1952, 1954) and the Cramér-von Mises (CVM) test
(Cramér, 1928; von Mises, 1931 and Smirnov, 1936). The Shapiro-Wilk test has been
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found to outperform other tests (e.g., Razali and Wah, 2011). However, of recent, new
GoF tests for normality that utilize the empirical likelihood ratio (ELR) technique (Owen,
2001) are beginning to gain popularity. These test are known to be powerful and efficient
tests for normality (e.g., Dong and Giles, 2007; Vexler and Gurevich, 2010; Shan et al.,
2010). These tests have proved to outperform other classical established tests, including
the Shapiro-Wilk test under certain alternatives.

However, these ELR tests have not yet been applied in testing for normality of resid-
uals in linear regression models. Let us consider a classical linear regression model in its
matrix form given by

Y = Xβ + ε, (1.1)

where Y is an n× 1 vector of response variables and X is a known n× k non-stochastic
matrix of rank k. The vector β is a k × 1 of unknown regression coefficients whilst
ε is an n × 1 vector of unobservable elements. In practice, especially in simple linear
regression modeling, the assumption for normality of the error terms is always necessary
to check before any further inferences can be done. There are several ways of checking
this distributional assumption but in this study we focused on a numerical assessment
using GoF tests where the null and alternative hypothesis are given by

H0 : The errors follow a normal distribution.
H1 : The errors do not follow a normal distribution.

Since ε is unobservable, GoF tests for ε in linear regression models usually depend on
sample errors such as the ordinary least squares residuals (OLS) or the best linear unbiased
scalar residuals (BLUS) among others. Most goodness-of-fit tests assume that elements
are independent and identically distributed. This proves not to be the case for the OLS
residuals in the univariate linear model because these residuals are not independent. The
OLS residual vector from a linear regression model is defined as a linear transformation
of the response vector Y and can also be expressed as a linear transformation of the error
vector ε:

ε̂ := MY = Mε,

where M = I − X(X ′X)−1X ′ is an n × n idempotent symmetric matrix with a rank
of (n − k), which annihilates the image of X and preserves its orthogonal complement.
Observe that E(ε̂) = 0 and Var(ε̂) = σ2M . Moreover, if ε is normal, so is ε̂. The
covariance matrix of the OLS residual vector is not a diagonal matrix but a singular and
hence, the elements of the OLS residual vector are not independently distributed. Due to
this shortfall of OLS residuals, Theil (1965, 1968) formulated the best linear, unbiased,
scalar-type (BLUS) variance residuals for linear regression models. Like the OLS, the
BLUS residual vector is defined as a linear transformation of the response vector Y and
can also be expressed as a linear transformation of the error vector ε:

ε∗ := AY = Aε,

where A is an (n− k)×n matrix, which, like M , annihilates the image of X , but, in con-
trast to M , maps its orthogonal complement isometrically onto Rn−k. Like for the OLS,
we have E(ε∗) = 0, but in contrast, the covariance matrix of the BLUS residual vector
is of full rank and diagonal: Var(ε∗) = σ2In−k. It is normally distributed N(0, σ2In−k)
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if and only if the error terms are from a normal distribution and this makes the BLUS
residuals ideal for conducting GoF testing (Huang and Bolch, 1974). Despite their desir-
able theoretical properties, the BLUS residuals are not much used by researchers, perhaps
because of computational difficulties. However, when the error terms are not normal, the
BLUS residuals may suffer from lack of independence and this may be at least as equal
as the lack of independence among OLS residuals.

Standard tests for normality are appropriate for independent data; hence the issue
of dependency of these residuals then raises an important question as to which of the
tests is most powerful to utilize under the presence of correlations amongst these resid-
uals. Huang and Bolch (1974) conducted a study to compare some well-known GoF
tests in testing normality of ordinary least square (OLS) and best linear unbiased scalar
(BLUS) residuals in linear models. Their findings revealed that the Shapiro-Wilk test is
by and large better than other tests considered and this is in concurrence with Shapiro et
al. (1965). The researchers also revealed that the OLS residuals dominated in power as
compared to the BLUS residuals. Their findings are similar to those of Ramsey (1969,
1972, 1974).

We conducted an extensive comparison on the performance of the recently proposed
ELR based tests to that of other classical well-known existing tests in normality testing
of OLS and BLUS residuals in simple linear regression models. Thus, the study investi-
gated the power and empirical probability of Type I error of the selected tests. The study
focused on six tests, that is, the modified Kolmogorov-Smirnov (known as the Lilliefors
(LL) test) (Lilliefors, 1967), the Anderson and Darling (AD) test (Anderson and Darling,
1952, 1954), the Cramér-von Mises (CVM) test (Cramér, 1928; von Mises, 1931 and
Smirnov, 1936), the Shapiro-Wilk (SW) test (Shapiro and Wilk, 1965), the density based
empirical likelihood ratio test (Vexler and Gurevich, 2010) and the moment based empiri-
cal likelihood ratio based GoF test (Shan et al., 2010). Monte-Carlo simulations using the
R statistical package revealed that the ELR tests are superior under certain alternatives of
both the OLS and BLUS residuals. A real data study was also utilized.

2 Tests for Normality
Pearson (1895) pioneered the development of methods to test for departures from normal-
ity and to date there are numerous GoF tests readily available. For a detailed overview of
these tests one can refer to Thode (2002). Several authors have done some investigations
and comparisons on the performance of these tests in terms of the power and the probabil-
ity of Type I error (see for example Shapiro et al., 1968; Huang and Bolch, 1974; Pearson
et al., 1977; Dufour et al., 1998; Thode, 2002; Yazici and Yolacan, 2007; Razali and Wah,
2011; Yap and Sim, 2011). Most of these studies have reported that the Shapiro-Wilk
test is considered as the better alternative in testing for normality both for continuous data
and in residual analysis. This section will present a brief synopsis of the tests considered
in this study including the recently proposed ELR based tests for normality that have not
yet been applied in residual analysis. The choice of the well-known existing tests was
based on a selection of the most efficient and powerful tests that are commonly used by
researchers in testing for normality. It should be noted that all tests considered assumes
that sample observations are independent and identically distributed.
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2.1 Empirical Distribution Function (EDF) Tests
The concept of the EDF tests in assessing for departures from normality in goodness-of-
fit testing is focused on comparing the EDF (computed using the observations) with the
cumulative distribution function (CDF) of the normal distribution to determine whether
there exists a close match between the two functions. In this study we focused on the
common EDF tests which are, the modified Kolmogorov-Smirnov (denoted by LL) test
(Kolmogorov, 1933; Lilliefors, 1967), the Anderson and Darling (AD) test (Anderson and
Darling, 1954) and the Cramér-von Mises (CVM) test (Cramér, 1928; von Mises, 1931
and Smirnov, 1936).

2.1.1 The Modified Kolmogorov-Smirnov Test

The Lilliefors (LL) test is known to be related to the Kolmogorov-Smirnov (KS) test
where it is regarded as a modified version of the KS test. Developed by Lilliefors (Lil-
liefors, 1967), this test compares the EDF of the sample observations with a normal dis-
tribution where its unknown mean and standard deviation are first estimated from the
data. The major difference between the Lilliefors (LL) and Kolmogorov-Smirnov (KS)
test statistic is that the EDF from the LL test is obtained from standardized sample obser-
vations while the KS test uses the observed values. The LL statistic is defined as

LL = sup
x∈R
|Fn(x)− F ∗(x)|,

where Fn(x) is the empirical CDF whilst F ∗(x) is the hypothesized CDF. The LL test
is readily available in several statistical packages. In this study we used the function
lillie.test() which is available in the nortest R statistical package.

2.1.2 Cramér-von Mises (CVM) Test

The Cramér-von Mises (CVM) test is one of the well-known EDF tests developed by
Cramér (1928), von Mises (1931) and Smirnov (1936). The CVM test statistic is distribu-
tion free, that is, the distribution is independent of the hypothesized distribution function,
F ∗(x). The CVM test statistic can be given by

CVM = n

∫ ∞
−∞

[Fn(x)− F ∗(x)]2dF ∗(x).

where Fn(x) is the empirical CDF. The CVM test rejects H0 if CVM ≥ C1−α, where the
critical values (C1−α) are easily obtained (one can check in Anderson and Darling, 1954).
The cvm.test() in the nortest R statistical package was used to implement the CVM
GoF test.

2.1.3 Anderson and Darling (AD) Test

The Anderson and Darling (AD) test is a modified version of the Cramér-von Mises
(CVM) test and is considered to be the most powerful EDF test (Arshad et al., 2003).
The difference between the AD and CVM test is based entirely on the fact that the AD
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test statistic is more sensitive and focuses more heavily on the weight of the normal dis-
tribution tails (Farrel and Stewart, 2006) like in the CVM test smaller values indicate that
the distribution is consistent with a normal distribution. One major drawback of the AD
test is on the calculation of the critical values which are required to be computed for each
specified distribution. Anderson and Darling (1954) defined the test statistic as

A2 = n

∫ ∞
−∞

[Fn(x)− F ∗(x)]2

F ∗(x)(1− F ∗(x))
dF ∗(x),

where Fn(x) is the empirical CDF and F ∗(x) is the cumulative distribution function of the
null distribution. This is a weighted average of the squared difference [Fn(x)− F ∗(x)]2,
which is weighted by ψ(x). The weight function ψ(x) is non-negative which is computed
by ψ(x) = [F ∗(x)(1 − F ∗(x))]−1. It should be noted that when ψ(x) = 1, the AD test
statistic becomes the CVM test statistic. In order to reject the null hypothesis at a specified
level of significance (α), the test statistic, A2, should be greater than the critical value that
is obtained from Monte Carlo simulations. The ad.test() which is available in the
nortest R statistical package was used to implement the AD GoF test.

2.2 Regression and Correlation Tests
Another category of normality tests that was considered in this study is the regression and
correlation tests. These tests are entirely based on the ratio of two weighted least squares
estimates of scale obtained from order statistics. This study only focused on regression
tests. The most common regression test is the one developed by Shapiro and Wilk (1965).

2.2.1 The Shapiro-Wilk (SW) Test

The Shapiro-Wilk (SW) test was developed by Shapiro and Wilk (1965) and is regarded
by most researchers as the best choice for normality testing (e.g., Thode, 2002). It has
become the preferred GoF test for normality in residual analysis for linear regression
models and other statistical applications due to its desirable power properties (Mendes
and Pala, 2003). Given an ordered sample of n sample observations, that is, X(1) ≤ X(2)

≤ . . . ≤ X(n) the SW test proposed by Shapiro and Wilk (1965) uses the test statistic

SW =
(
∑n

i=1 aix
(i))2∑n

i=1(xi − x̄)2
, (2.1)

where xi is the ith order statistic, x̄ is the mean of the sample observations and ai values
are computed using the sample observation’s (xi) means, variances and covariances. Thus

ai = (a1, a2, . . . , an) =
mTV −1

(mTV −1V −1m)1/2
,

where V is the covariance matrix and mT are the expected values of the order statistics
of i.i.d. sample observations from a standard normal distribution. The value of the test
statistic is between 0 and 1, where small values will result to H0 being rejected. The test
was originally restricted for sample size of less than 50. Since then, extensive research



6 Marange and Qin

has been done to modify the SW test. Royston (1982) modified the SW test in order to
widen the constraint of the sample size to 2000. He further observed that the SW test
had weaknesses on the approximation of weights that are utilized in the algorithms for
sample sizes greater than 50. Royston (1995) then proposed an improved modification
of the approximation to the weights which can cater for any sample size in the range
3 ≤ n ≤ 5000. The Shapiro-Wilk test is available in several statistical packages. This
study used the stats R statistical package utilizing the function sw.test().

2.3 Empirical Likelihood Ratio (ELR) Based Tests
The ELR based GoF tests have recently gained popularity and are based upon the empir-
ical likelihood function (DiCiccio et al., 1989; Owen, 1988, 1991, 2001; Dong and Giles,
2007; Vexler and Gurevich, 2010; Shan et al., 2010; Yu et al., 2010). Recently, several
GoF tests for normality have been proposed using the empirical likelihood methodology.
In this study we focused on a classical ELR GoF test based on moment constraints (pro-
posed by Shan et al., 2010) as well as a density based ELR test (proposed by Vexler and
Gurevich, 2010). These tests are known to be efficient and powerful with critical values
that can be easily computed using Monte-Carlo simulations.

2.3.1 Classical Empirical Likelihood Ratio Based Test

Under this category we are going to focus on a recently developed test by Shan et al.
(2010) to test for departures from normality based on moment relations of a standard
normal distribution. Shan et al. (2010) proposed this method after identifying the weak-
nesses in a method that was developed by Dong and Giles (2007). Dong and Giles (2007)
proposed an empirical likelihood GoF test statistic for normality by using the method pre-
sented by Owen (2001). They used the first four moment constraints (that is, the mean,
variance, skewness and kurtosis) of the normal distribution. However, due to the fact that
the test involves numerically complex nonlinear equations it is not easy to utilize. Also,
the numerical convergence of the global maximum is not certain. In addition, Shan et
al. (2010) also noted that the asymptotic Type I error rate for the classical ELR test by
Dong and Giles (2007) has poor control in small samples. Shan et al. (2010) then devel-
oped a simple and efficient ELR GoF test (SEELR) for normality which is rooted in the
dependence of the moment constraints that are related to the standard normal distribution.

To summarize this test, consider n unordered independent and identically distributed
sample observations, i.e., X1, X2, . . . , Xn. The SEELR tests the null hypothesis that the
data follow a normal distribution with mean µ and variance σ2. In this case, both µ and
σ are unknown fixed parameters. The test makes use of standardized sample observations
using the Lin and Mudholkar (1980) transformation. By definition, the standardized ran-
dom variables Z1, Z2, . . . , Zn follow a t-distribution with n−2 degrees of freedom. It can
be easily noted that as the degrees of freedom become large, the t-distribution approaches
a standard normal distribution and the standardized sample observations become asymp-
totically independent. Shan et al. (2010) then proposed to use the moment function of the
t-distribution with n − 2 degrees of freedom. Using the empirical likelihood tests under
the null hypothesis:

H0 : E(Zk) = E(T kn−2),
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where T kn−2 follows a t-distribution with n − 2 degrees of freedom. Following the uti-
lization of the EL methodology, the researchers proposed to reject the null hypothesis
if

SEELR := max
k∈G

(−2LLR)k > Cα,

where Cα is the test threshold, and G is a set of integer values. For high levels of power
under the null hypothesis G was set to {3,4,5,7}. For more details on the SEELR test one
can refer to Shan et al. (2010). In this study we utilized this test using the R statistical
package. The R-code is available in the author’s article.

2.3.2 Density Based Empirical Likelihood Based Test

The density based empirical likelihood ratio test (dbEmpLikeGoF) is a relatively recent
technique which has significantly outperformed most classical existing methods (Vexler
and Gurevich, 2010). The dbEmpLikeGoF technique was successfully applied to develop
powerful and efficient GoF tests for one and two-sample problems (Vexler and Gurevich,
2010; Vexler et al., 2011; Karagrigoriou, 2012; Gurevich and Vexler, 2011; Vexler et
al., 2012). These tests offer a variety of GoF tests for distributional assumptions from a
wide range of hypotheses. In this study we focused on the density-based EL ratio test for
normality and the derivations can be found in Vexler and Gurevich (2010). Vexler and
Gurevich (2010) considered the following EL ratio test statistic

Vn = min
1≤m <n1−δ

(2πs2)n/2
n∏
i=1

2m

n(X(i+m) −X(i−m))
, 0 < δ < 1,

where s is the sample standard deviation and X(1) ≤ X(2) ≤ . . . ≤ X(n) are the order
statistics of the sample X1, X2, . . . , Xn. The null hypothesis is rejected if and only if

log(Vn) > C,

where C is the test threshold and Vn is the test statistic defined above. Miecznikowski et
al. (2013) presented an R package for statistical tests that are based on the dbEmpLikeGoF
technique. This is the package that was utilized in this study.

3 Monte Carlo Simulation Procedures
This section outlines the Monte Carlo simulation procedures that were considered for
GoF power comparisons in testing for normality of OLS (ε̂) and BLUS residuals (ε∗) in
a univariate linear regression model with the form presented earlier in (1.1). Previous
studies have considered evaluating multiple linear regression models whereby there is a
constant term plus at least two or more regressors (for example see, Huang and Bolch,
1974; Ramsey, 1974; Weisberg, 1980; White and MacDonald, 1980; Jarque and Bera,
1987). Jarque and Bera (1987) considered regressors X1, . . . , X4 following the study of
White and MacDonald (1980). For their experiments they decided to set X1i = 1 (i =
1, 2, . . . , n) and then generate X2, X3 and X4 from a uniform distribution. On the other
hand, Huang and Bolch (1974) also considered a multiple linear regression model with a
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constant term and three additional regressors that were drawn from a uniform distribution
and held constant for each experiment. However, in their experiments Huang and Bolch
(1974) proposed to use the following pre-defined model

Yi = −20.0 + 4.5X1i − 1.5X2i + 2.8X3i + εi, i = 1, 2, . . . , n.

Due to the different forms in which the regressors can be generated and/or due to
changes in the number of regressors k, Weisberg (1980) as well as Jarque and Bera (1987)
found that the power of tests may vary. However, the power ranking of the tests does not
change (Weisberg, 1980; Jarque and Bera, 1987). Therefore, we then proposed not to
investigate the effect of the number of regressors k, and the elements of the regressor
matrix but rather focused our attention more on the distribution of the residual vector and
sample size. Following the approach by Huang and Bolch (1974) we then proposed to use
a pre-defined simple linear regression model of the form

Yi = 1 + 2X1i + εi, i = 1, 2, ..., n.

The regressor, which is independent of εi was randomly generated once from a uni-
form distribution and kept constant for each simulation based upon a given sample size.
For the assessment of Type I error, the random disturbances were drawn from a standard
normal distribution. In terms of power simulations, the resulting vector ε has a spec-
ified known distribution. Thus, in computing the power of a test, the error vectors of
the random disturbances (ε) were drawn from four alternative distributions, Exponential
(1), Lognormal (0,1), Cauchy (0,1) and Uniform (0,1) distributed OLS and BLUS residu-
als. The symmetric and asymmetric nature of these distributions as well as their different
shapes offer a variety of contrasts to the normal distribution.

Monte Carlo procedures were then used to evaluate the probability of the Type I error
and the power of the Lilliefors (LL) test (Lilliefors, 1967), the Anderson and Darling (AD)
test (Anderson and Darling, 1952, 1954), the Cramér-von Mises (CVM) test (Cramér,
1928; von Mises, 1931 and Smirnov, 1936), the Shapiro-Wilk (SW) test (Shapiro and
Wilk, 1965), the density based empirical likelihood ratio based test (DB) (Vexler and
Gurevich, 2010) and the simple and exact empirical likelihood ratio test based on moment
relations (SEELR) (Shan et al., 2010). These GoF tests are all directly applicable to
the OLS and BLUS residuals. We used the function lm() for the generation of OLS
residuals. For the generation of BLUS residuals we used the R Code for Theil’s BLUS
residuals presented by Vinod (2014). Three levels of significance, α, 1%, 5% and 10%
were considered in order to investigate the effect of the level of significance on the power
of the tests. Power simulations were conducted using 5000 replications with varying
sample sizes (n = 15, 30, 50, 80, 100, 150 and 200), at the various levels of significance.

3.1 Assessing the Probability of the Type I Error of the GoF Tests
Before the power simulation study we assessed the probability of the Type I error of the
GoF tests using 500 000 simulations over different α levels (α = 0.01, 0.05 and 0.10) and
sample sizes (n = 15, 50 and 150). By definition, a GoF test is intended to reject the
null hypothesis with a chance of at most α when the null is true, i.e., false positive rate.
We assessed the empirical probabilities of the Type I error for all tests under OLS and
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BLUS residuals as well as normally distributed data with zero mean and unit variance.
Table 3 presents the simulated probabilities of the Type I error, along with the standard
error for all tests. For clarity and comparison sake, Figures 3 to 8 shows the graphical
representations of the cumulative Type I error rates only at 0.05 level of significance.
The plots for the empirical cumulative probability function of the simulated p-values for
α = 0.01 and α = 0.10 were omitted since their plots were more or less the same as those
for α = 0.05.

It is clearly evident that the plots produced the expected appearance in most of the
simulated scenarios. That is, the plots show close to the α-level of simulated Type I error
rates for both the OLS and BLUS residuals as well as the standard normal data. The
closeness of the estimated probabilities of Type I error to the nominal value (α = 0.05)
attests that the GoF test does perform as expected. However, our empirical results from
the simulated Type I error rates of the density based ELR test provide evidence which
suggests that the test tends to under reject in moderate sample settings (i.e., n = 50) at low
levels of significance (i.e., α = 0.01 and 0.05). This is however of little concern for one to
use the test under these settings as the deviation from the true nominal levels is somewhat
within a statistically acceptable range. Generally, as expected, the behaviour of the Type
I error rates for the BLUS residuals and the standard normal data is the same since both
sets of data are known to be independent unlike the OLS residuals which suffer from lack
of independence. However, the plots for the OLS residuals are somewhat similar to that
of the BLUS residuals and the standard normal data in all tests for n = 50 and 150. It
is also interesting to note that the estimated Type I error rates for OLS residuals in small
sample sizes (i.e., n = 15) are generally smaller than those for the BLUS residuals and
the standard normal data in our experiments. Also for large sample size, n = 150, the DB
test tends to give estimated Type I error rates that are consistently higher than the nominal
α-levels. However, the ELR based tests are the only tests that have estimated Type I error
rates that are consistently closer to the true nominal α-levels for small sample size (i.e.,
n = 15) under both the OLS and BLUS residuals as well as the standard normal data.
Generally, from these findings all tests considered in this study can be used to test for
normality in OLS and BLUS residuals.

3.2 Power Analysis: Simulation Results
Table 4 gives the results when the alternative distribution is exponential (i.e., Exp (1)).
The SEELR test has the highest power among the tests for significance levels of 1%,
5%, 10%. That is, in general, the SEELR test out performed all the tests studied under
exponentially distributed OLS and BLUS residuals alternatives. The SW test is the second
most powerful test under the exponential alternative. For small sample size (i.e., n = 15),
at 1% level of significance, the SW test is seen to be superior to the SEELR test. Generally,
the power of the DB test is slightly lower to that of the AD test, whilst the LL test has the
least power under these exponentially distributed OLS and BLUS residual alternatives.
Under Lognormal (0,1) distributed OLS and BLUS residuals (see Table 5) both the SW
and the SEELR tests are generally the most superior tests. However, for α = 0.01 the AD
test is slightly superior than the SEELR test against OLS residuals. It is also important to
note that the SEELR tests is the most powerful test under the lognormal (0,1) distributed
BLUS residuals for all the different significance levels considered in this study. The power
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of the DB test is only superior to that of the LL test under this alternative.
For the symmetric, Cauchy (0,1) distributed OLS and BLUS residuals, the power of

the DB and SEELR tests are inferior to that of other tests considered in this study (see
Table 6). The AD test is the most powerful, with the SW test being the second most
superior but somewhat comparable to the CVM test. For α-levels of 0.05 and 0.10, the
powers of all of the AD, SW and CVM tests converge to 100% as n grows, though more
slowly for the BLUS residuals. Only under the Cauchy (0,1) alternative is the LL test
superior to the ELR based tests. Table 7 gives the results when the alternative distribution
is Uniform (0,1). The DB test is the most powerful among all of the six tests considered
for all the given α-levels at various sample sizes. For all α-levels, the power of the DB test
converges to 100% as n grows, for both the OLS and the BLUS residuals. The SW tests is
once again the second most superior test whilst the LL test is the least powerful test under
the uniformly distributed OLS and BLUS residuals. The SEELR test is only superior
to the CVM and LL tests whilst slightly inferior to the AD test. Generally, when the
alternative is symmetric and uniformly distributed, all of the tests have quite low power
as compared to other alternatives considered in this study. In summary, as expected, the
simulation study shows that none of the tests considered in this study can be considered
to be uniformly the best for all the alternative distributions studied (for example see,
Janssen, 2000). However, for all the simulated scenarios, the SW test was either the most
powerful (i.e., under Lognormal alternative) or the second most powerful (i.e., under Exp
(1), Cauchy (0,1) and Uniform (0,1) alternatives). On the other hand, both the ELR tests
considered in this study have proved to be the most powerful tests, only under certain
alternatives. In terms of the residuals, the OLS outperformed the BLUS residuals in all
simulated scenarios.

4 Real Data Example

In order to assess the applicability of the ELR based tests on real data, we conducted
a study using the mammal data (n = 62) which are data records of average weight of
the brain and body for a number of mammal species. This data has been used in several
statistical applications in linear regression modelling which includes Spaeth (1991) and
Weisberg (1980). In our study we were interested in modelling the effect of brain weight
on body weight using a simple linear regression model. The model under consideration
can be written as

y = β0 + β1x1 + ε,

where y is body weight, x1 is the brain weight and ε̂ are the residuals. We were interested
in testing whether both the OLS and BLUS residuals from this model are consistent with
a normal distribution. Figure 1 below shows the plots to assess normality of the OLS and
BLUS residuals for the resultant mammal data model.

From the plots it is evident that both the OLS and BLUS residuals are not consistent
with the normal distribution. To further check this inconsistency, we carried out a GoF
test for normality using the modified KS test, the AD test, the CVM test, the SW test,
the DB test and the SEELR test. We took note of the respective p-values of the tests.
The results are presented in Table 1 below and it is clear that at 5% level of significance
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Histogram: OLS Residuals
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Histogram: BLUS Residuals
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Figure 1: Plots to check for normality on OLS and BLUS residuals of the mammal model

the ELR based tests also rejected the null hypothesis just like any other common existing
tests, hence enabling us to conclude that the residuals are not normally distributed.

Table 1: Assessing normality of OLS and BLUS residuals using the mammal data. Presented
are p-values for testing normality of residuals (n = 62, α = 0.05).

Residuals LL AD CVM SW DB SEELR

OLS Residuals <0.0001 <0.0001 <0.0001 <0.0001 0.0010 <0.0001
BLUS Residuals <0.0001 <0.0001 <0.0001 <0.0001 0.0010 <0.0001

Note: Testing for normality of OLS and BLUS residuals using, the Lilliefors (LL) test, the Anderson
and Darling (AD) test, the Cramér-von Mises (CVM) test, the Shapiro Wilk (SW) test, the Density
based empirical likelihood ratio (DB) test and the simple and exact empirical likelihood ratio based
(SEELR) test.

In order to normalize the residuals a log transformation of the variables was done.
Figure 2 below shows the plots for assessing the OLS and BLUS residuals for the linear
model using the log transformed observations. The plots are clearly suggestive that both
the OLS and BLUS residuals are from a normal distribution.

Further assessment for normality of these residuals was done by conducting goodness-
of-fit tests. Thus, the residuals after the log transformation, should be close to normality,
and the tests for normality should provide large p-values. The results in Table 2 below
shows that all the tests considered including the ELR based tests suggest that the residuals
are now normally distributed as indicated by the plots in Figure 2 above.

This real data example has shown that the ELR based GoF tests are comparable to the
studied common existing GoF tests and can be easily applied in real life scenarios.
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Histogram: OLS Residuals
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Histogram: BLUS Residuals
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Figure 2: Plots to check for normality on OLS and BLUS residuals of the transformed mam-
mal model.

Table 2: Assessing normality of OLS and BLUS residuals using the log transformed mammal
data. Presented are p-values for testing normality of residuals (n = 62, α = 0.05).

Residuals LL AD CVM SW DB SEELR

OLS Residuals 0.0773 0.3655 0.3095 0.5293 0.9101 0.2582
BLUS Residuals 0.5706 0.3391 0.4040 0.3448 0.9503 0.1382

Note: Testing for normality of OLS and BLUS residuals using, the Lilliefors (LL) test, the
Anderson and Darling (AD) test, the Cramér-von Mises (CVM) test, the Shapiro Wilk (SW)
test, the Density based empirical likelihood ratio (DB) test and the simple and exact empiri-
cal likelihood ratio based (SEELR) test.

5 Conclusion

We have demonstrated the applicability of the ELR based tests in goodness-of-fit testing
of normality for residuals in simple linear regression models. The present study confirms
previous findings that the Shapiro-Wilk test is overall powerful in GoF testing of residuals
in linear regression models (e.g., Shapiro and Wilk, 1965; Dyer, 1974; Huang and Bolch,
1974). However, this study has shown that under certain alternatives, certain ELR based
tests outperform the Shapiro-Wilk test. In particular, the SEELR test proposed by Shan
et al. (2010) outperforms the Shapiro-Wilk test when the alternative is Exponential (1)
whilst the density based ELR test proposed by Vexler and Gurevich (2010) is superior
under the Uniform (0,1) distributed OLS and BLUS residuals. Therefore, the ELR based
tests seem to be promising alternatives, but they cannot replace the classical tests yet.
However, this might be the case after certain improvements. It would be desirable to
develop an ELR based test which outperforms the classical tests under most alternative
distributions that occur in practice. In particular, further research on the weakness of the
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moment based ELR GoF tests against symmetric alternatives needs to be done. It would
be interesting, therefore, for future research to explore and implement the techniques that
can address this issue and at the same time maintain the good power properties for the
ELR approach. We also noticed that the simulated Type I error rates of the density based
ELR test provide evidence which suggests that the test tends to under reject in moderate
sample settings. This is however of little concern for one to use the test under these
settings as the deviation from the true nominal levels is somewhat within a statistically
acceptable range.

In terms of the residuals, Huang and Bolch (1974) as well as Ramsey (1974) alluded
that OLS residuals are more superior to BLUS residuals when one is testing normality,
which is also the case in our study and this finding is also consistent with Ramsey (1969,
1972). The use of transformed residuals, such as the BLUS residuals comes with some
computational burdens involved in calculating them. However, since the BLUS residuals
may suffer from lack of independence and this may be at least as equal as the lack of
independence among OLS residuals when the error terms are not normal, one can just
make use of the OLS residuals in testing for normality in simple linear regression models.
In other related work, some researchers have rather supported the use of OLS residuals
over other forms of transformed residuals (e.g., Jarque and Bera, 1987) whereas some
have shown indecisiveness in choosing between OLS and BLUS residuals (e.g., Ramsey,
1969; Ramsey and Gilbert, 1972). However, it will be interesting for future research to
look at the applicability of the ELR based tests in GoF testing for normality of other forms
of residuals, hence, extensions of our study to more complex linear regression models will
be a potential area of future research.
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