
2.3 Sampling plan optimization

We wish to estimate the average weight of patients with hypertension in
the age group 60 to 80 years, we know that the weight differs considerably
according to gender, denote the average weight asµ1 for men and µ2 women.
The time and money avaiable for this research allow us to include a sample of
size 100. We know that the proportion of men and women with hypertension
differs in the population, denote the proportion of men by d. We wish to
know how to split our sample size between men and women to ensure the
smallest possible standard error. Assume that the standard deviation of the
weigth of men is larger than the standard deviation of the weight of women
by factor k.

• Find an unbiassed estimator of the population mean

The population mean µ can be expressed as µ = dµ1 + (1 − d)µ2.
Since E(X̄1) = µ1 in E(X̄2) = µ2, the unbiassed estimator of the mean
is given by

M = dX̄1 + (1− d)X̄2.

• Express the standard error using the subsample sizes (use n1 to denote
the number of men and n2 to denote the number of women in the sam-
ple).

Taking into account that the average weight of women is independent
of the average weight of men, we get

var(M) = d2var(X̄1) + (1− d)2var(X̄2) = d2
σ2
1

n1

+ (1− d)2
σ2
2

n2

.

• Let σ1 = kσ2. Find the subsample sizes that minimizes the standard
error. Calculate n1 for k = 1 and k = 2, assume that the proportion of
men equals 0, 7.

The variance of the sampling mean can be written as

var(M) = σ2

(
d2k2

n1

+
(1− d)2

n− n1

)
,
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we thus need to minimize the term in the brackets. Take the derivative
with respect to n1 and equal to 0:

−d
2k2

n2
1

+
(1− d)2

(n− n1)2
= 0

−(n− n1)
2d2k2 + n2

1(1− d)2 = 0

(d2k2 − (1− d)2)n2
1 − 2nd2k2n1 + n2d2k2 = 0

We now solve the quadratic equation to get the solution (there are
actually two solutions, but the other one is larger than n and thus
makes no sense):

n1 =
ndk

dk + 1− d

For k = 1, we get n1 = nd, in our example this implies n1 = 70 and
n2 = 30. The standard error is minimised when the proportions of men
and women in the sample equal the proportions in the population.
If the standard deviation of the weight in men is twice the standard de-
viation in women, we get n1 = 82, 4. This implies that if one subgroup
is more variable than the other, more individuals from that subgroup
have to be sampled.

Understanding the ideas in R:

• Choose sensible values for all the parameters and generate data. Graf-
fically show how values of n1 affect the quality of your estimate for
various values of d and k.

2.4 Simple random sample from a finite population,
second attempt

Consider again a simple random sample of size n from population N , denote
the values in the population as xi; i = 1, . . . , N , and the population mean
and variance as µ and σ2, respectively. Define the random variable Ii =
I[i is included in the sample] and write the estimator of the population mean µ as

C = 1
n

∑N
i=1 Iixi.
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• What is the sum
∑N

i=1 Ii? What is the probability P (Ii = 1)?

Since the sample is of size n, the sum equals
∑N

i=1 Ii = n. To cal-
culate the probability that the unit i is chosen, we realize that there
are

(
N
n

)
combinations to take a sample of size n from a population of

size N . The count the number of samples that include the unit i, we
take into account that we already know one of the units and that we
choose n − 1 units out of the remaining N − 1. The probability thus
equals:

P (Ii = 1) =

(
N−1
n−1

)(
N
n

) =
n

N

• Show that the estimator C is unbiased.

We wish to estimate µ = 1
N

∑N
i=1 xi

E(C) =
1

n

N∑
i=1

E(Ii)xi

The variable Ii can take values 0 or 1, hence E(Ii) = P (Ii = 1) = n
N

(the sample is random, which implies that the probabilities for all i are
equal), and we get

E(C) =
1

n

N∑
i=1

n

N
xi =

1

N

N∑
i=1

xi = µ.

• Calculate var(Ii) and cov(Ii, Ij).

The variable Ii is Bernoulli, with probability P (Ii = 1) = n
N

. Its
variance thus equals

var(Ii) =
n

N
(1− n

N
) =

n

N

N − n
N

To calculate the covariance, we use the usual idea: since cov(I1, I1 +
. . . IN) = cov(I1, n) = 0 and cov(Ii, Ij) is equal for all i 6= j, we get

cov(Ii, Ij) = −
n
N
N−n
N

N − 1
= − n(N − n)

N2(N − 1)
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• Show that the variance of the estimator equals var(C) = σ2

n
N−n
N−1

var(C) =
1

n2
cov(

N∑
i=1

Iixi,

N∑
j=1

Ijxj)

=
1

n2

N∑
i=1

cov(Iixi,
N∑
j=1

Ijxj)

=
1

n2

N∑
i=1

[
cov(Iixi, Iixi) +

N∑
j=1,j 6=i

cov(xiIi, Ijxj)

]

=
1

n2

N∑
i=1

[
x2i cov(Ii, Ii) +

N∑
j=1,j 6=i

xixjcov(Ii, Ij)

]

The population variance is defined as:

σ2 =
1

N

N∑
i=1

(xi − µ)2

=
1

N

N∑
i=1

x2i − µ2

N∑
i=1

x2i = N(σ2 + µ2)
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We derive the variance as

var(C) =
1

n2

N∑
i=1

[
x2ivar(Ii)−

N∑
j=1,j 6=i

xixj
var(Ii)

N − 1

]

=
var(Ii)

n2(N − 1)

N∑
i=1

[
(N − 1)x2i − xi

N∑
j=1,j 6=i

xj

]

=
var(Ii)

n2(N − 1)

N∑
i=1

[
(N − 1)x2i − xi(

N∑
j=1

xj − xi)

]

=
var(Ii)

n2(N − 1)

N∑
i=1

[
(N − 1)x2i − xi(Nµ− xi)

]
=

var(Ii)

n2(N − 1)

N∑
i=1

[
Nx2i − xiNµ

]
=

var(Ii)

n2(N − 1)

[
N

N∑
i=1

x2i −Nµ
N∑
i=1

xi

]

=
var(Ii)

n2(N − 1)

[
N2(σ2 + µ2)−N2µ2

]
=

var(Ii)

n2(N − 1)

[
N2σ2

]
=

N2σ2

n2(N − 1)

n

N

N − n
N

=
σ2

n

N − n
N − 1

2.5 A more complex sampling scheme

We wish to estimate the achievement of Ljubljana pupils on a test written
in several countries. We split the population of N = 2800 7th grade pupils
by schools (K = 46). On the first step, we randomly (independently of the
number Ni of pupils in school i) sample k = 10 schools, on the second step,
we choose a sample of n = 15 on each of the 10 schools. Let µ denote the
population mean test score and let µi denote the mean of each school. The
two sampling steps are independent.
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• Find an unbiased estimator of µ.

We first express the overall mean µ with µi. Use xij to denote the
value of the j-th pupil on i-th school:

µ =
1

N

K∑
i=1

Ni∑
j=1

xij =
1

N

K∑
i=1

Ni · µi (1)

Denote the estimated mean of each school as X̄i and let Ii be an indi-
cator variable that equals 1, if a school is included in the sample. Let
our estimator equal

X̄ =
K∑
i=1

ciIiX̄i

We wish to determine the value of ci to ensure an unbiased estimator. A
simple random sample was taken within each school, hence E(X̄i) = µi.
Since sampling on the two levels is independent, we have E(IiX̄i) =
E(Ii)E(X̄i). Since schools were sampled with equal probability, we
have E(Ii) = k

K
for each i. Using all these results, we get

E(X̄) =
K∑
i=1

ciE(IiX̄i) =
K∑
i=1

ciE(Ii)E(X̄i)

=
K∑
i=1

ci
k

K
µi

To get (1), we must have ci
k
K

= Ni

N
, our estimator thus equals

X̄ =
K

N

1

k

K∑
i=1

NiIiX̄i.

• How would you estimate the population mean if the all schools were of
equal size L?

Since N =
∑K

i=1Ni, equal Ni = L give N = KL and thus

X̄ =
1

L

1

k

K∑
i=1

LIiX̄i =
1

k

K∑
i=1

IiX̄i
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• Is the sample size at each school important for the bias of the estimator?

No, X̄i is an unbiased estimator of µi regardless of the sample size.
The sample size is important for the standard error of our estimator.

• Express the variance of the estimator using the variance and covariance

var(X̄) = var(
K

N

1

k

K∑
i=1

NiIiX̄i)

=

(
K

Nk

)2 K∑
i=1

[
N2
i var(IiX̄i) +

K∑
j=1,i 6=j

NiNjcov(IiX̄i, IjX̄j)

]

• Denote the variance within each school as σ2
wi = 1

Ni

∑Ni

j=1(xij − µi)
2.

Find the expressions for var(IiX̄i) and cov(IiX̄i, IjX̄j).

We use the fact that sampling on the two levels is independent and
that I2i = Ii (12 = 1, 02 = 0):

var(IiX̄i) = E(I2i X̄
2
i )− E(IiX̄i)

2 = E(Ii)E(X̄2
i )− E(Ii)

2E(X̄i)
2

=
k

K
E(X̄2

i )−
(
k

K

)2

µ2
i

Since E(X̄2
i ) = var(X̄i) + E(X̄i)

2 =
σ2
wi

n
Ni−n
Ni−1 + µ2

i , we get

var(IiX̄i) =
k

K

(
σ2
wi

n

Ni − n
Ni − 1

+ µ2
i

)
−
(
k

K

)2

µ2
i = µ2

i

k(K − k)

K2
+
k

K

σ2
wi

n

Ni − n
Ni − 1

We now express the covariance:

cov(IiX̄i, IjX̄j) = E(IiIjX̄iX̄j)− E(IiX̄i)E(IjX̄j)

Independence of sampling and independence of sample means gives:

cov(IiX̄i, IjX̄j) = E(IiIj)µiµj − E(Ii)E(Ij)µiµj

= µiµjcov(Ii, Ij) = −µiµj
k(K − k)

K2(K − 1)
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• Derive the formula for the variance of the estimator in the case when
all values Ni equal L and the variance within schools is the same for
all the schools. Denote the between schools variance as σ2

b .

var(X̄) =

(
1

Lk

)2 K∑
i=1

[
L2var(IiX̄i) +

K∑
i=1,i 6=j

L2cov(IiX̄i, IjX̄j)

]

=

(
1

k

)2 K∑
i=1

[
µ2
i

k(K − k)

K2
+
k

K

σ2
w

n

L− n
L− 1

−
K∑

j=1,i 6=j

µiµj
k(K − k)

K2(K − 1)

]

The between schools variance can be expressed as :

σ2
b =

1

K

K∑
i=1

[µi − µ]2

=
1

K

K∑
i=1

[
µ2
i − 2µµi − µ2

]2
=

1

K

K∑
i=1

µ2
i − µ2
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We get:

K∑
i=1

µ2
i

k(K − k)

K2
−

K∑
i=1

K∑
j=1,i 6=j

µiµj
k(K − k)

K2(K − 1)

=
k(K − k)

K2(K − 1)

K∑
i=1

[
(K − 1)µ2

i − µi(
K∑
j=1

µj − µi)

]

=
k(K − k)

K2(K − 1)

K∑
i=1

[
(K − 1)µ2

i − µi(Kµ− µi)
]

=
k(K − k)

K2(K − 1)

K∑
i=1

[
Kµ2

i −Kµµi
]

=
k(K − k)K

K2(K − 1)

[
K∑
i=1

µ2
i − µ

K∑
i=1

µi

]

=
k(K − k)K

K2(K − 1)

[
K(σ2

b + µ2)−Kµ2
]

=
k(K − k)K

K2(K − 1)
Kσ2

b

=
k(K − k)

(K − 1)
σ2
b

and therefore

var(X̄) =
1

k2

[
k(K − k)

(K − 1)
σ2
b +

K∑
i=1

(
k

K

σ2
w

n

L− n
L− 1

)]

=
1

k2
k(K − k)

(K − 1)
σ2
b +

K

k2
k

K

σ2
w

n

L− n
L− 1

=
1

k

K − k
(K − 1)

σ2
b +

1

k

σ2
w

n

L− n
L− 1

Understanding the ideas in R:

• Try checking all the results in R.
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2.6 Estimation of covariance

A course was given to a random sample of n employees in a company of size
N . At the end of the course, the new knowledge was tested. The company
wishes to decide whether the course is sensible for all the individuals, so they
wish to estimate the correlation between the age of an employee (Xi) and
the test score (Yi).
For each individual from the sample, we have a pair of random variables
(Xi, Yi), i = 1 . . . n.

• Explain that the value cov(Xi, Yj) is equal for any i 6= j.

The sampling procedure can be seen as follows: the units are put in a
random order and the first n units represent our sample. Since all the
orders have the same probability, all units have the same probability
to appear on the ith position. All pairs (Xi, Yi) thus have the same
probability nd the covariance of Xi and Yj is equal for all i and j.

• Denote γ = cov(Xi, Yi). Calculate the covariance cov(Xi, Yj) for i 6= j.

We use the same trick as in the previous exercises. The sum of all
the population values is constant, hence

cov(Xi,
N∑
j=1

Yj) = cov(Xi, Yi) + (N − 1)cov(Xi, Yj) = 0.

Therefore (for i 6= j)

cov(Xi, Yj) = − γ

N − 1
.

• The covariance of variables X and Y is defined as

cov(X, Y ) = cov(X1, Y1) =
1

N

N∑
i=1

[(xi − µ)(yi − ν)] =
1

N

N∑
i=1

xiyi − µν,

where µ and ν denote the averages µ = 1
N

∑N
i=1 xi in ν = 1

N

∑N
i=1 yi.

We would like to estimate the covariance using the estimator γ̂ =
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c
[∑n

i=1XiYi − nX̄Ȳ
]
. Find the value of c to ensure an unbiased esti-

mator.

The expected value of the estimator equals

E(γ̂) = c

[
n∑
i=1

E(XiYi)− nE(X̄Ȳ )

]
(2)

Symmetry gives E(XiYi) = E(XjYj) for any i and j. We know that

cov(Xi, Yi) = E(XiYi)− E(Xi)E(Yi) = E(XiYi)− µν

Therefore, E(XiYi) = µν+ γ. The second term on the right side of (2)
can be written as:

E(X̄Ȳ ) = E

[
1

n

n∑
i=1

Xi
1

n

n∑
j=1

Yj

]

=
1

n2
E

n∑
i=1

[
XiYi +Xi

n∑
j=1,i 6=j

Yj

]

=
1

n2

n∑
i=1

[
E(XiYi) +

n∑
j=1,i 6=j

E(XiYj)

]

=
1

n2

n∑
i=1

[E(XiYi) + (n− 1)E(XiYj)]

We use the result

cov(Xi, Yj) = E(XiYj)− E(Xi)E(Yi)

E(XiYj) = µν − γ

N − 1

and thus

E(X̄Ȳ ) =
1

n2
n

[
µν + γ + (n− 1)(µν +

−γ
N − 1

)

]
=

1

n

[
nµν + γ(1− (n− 1)

N − 1
)

]
=

1

n

[
nµν + γ

N − n
N − 1

]
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Combining all the results into (2) we get

E(γ̂) = c

[
n∑
i=1

(µν + γ)− n 1

n

[
nµν + γ

N − n
N − 1

]]

= c

[
nµν + nγ − nµν − γN − n

N − 1

]
= c

[
nγ − γN − n

N − 1

]
= cγ

[
nN − n
N − 1

− N − n
N − 1

]
= cγ

N(n− 1)

N − 1

c must therefore equal 1
n−1

N−1
N

.

• How would you estimate the correlation? What do we know about the
bias of this estimator?

We use the formulas for estimation of variances and covariance:

ρ̂ =
ĉov(X, Y )

σ̂X σ̂Y

=
1

n−1
N−1
N

∑n
i=1(Xi − X̄)(Yi − Ȳ )√

1
n−1

N−1
N

∑n
i=1(Xi − X̄)2 1

n−1
N−1
N

∑n
i=1(Yi − Ȳ )2

=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n

i=1(Yi − Ȳ )2

We know nothing about this bias - the expected value of the quotient
does not equal the quotient of expected values.

Understanding the ideas in R:

• To check whether the estimate is unbiased, we use a simulation:

We first generate a population of size N = 300, the samples shall be of
size n = 10. Let the age (X) be distributed uniformly between 25 and
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65, and the success negatively associated with age, so that it on average
equals 100 − age (we assume that the residuals from this average are
normally distributed with standard deviation 20)

> set.seed(1)

> xi <- runif(300)*40+25 #300 individuals, aged 25-65

> yi <- 100 - xi + rnorm(300)*20 #the result on the test for the population

> cov(xi,yi) #population covariance

[1] -136.8110

> cor(xi,yi) #population correlation

[1] -0.5207052

> runs <- 10000 #number of simulation runs

> cova <- cora <- rep(NA,runs) #prepare the space for the results

> for(it in 1:runs){ #in each simulation run, do

+ inx <- sample(1:length(xi),size=10,replace=F) #choose a sample of 10

+ xa <- xi[inx] #look at their ages

+ ya <- yi[inx] #look at their test results

+ cova[it] <- 1/9*299/300*

+ sum( (xa-mean(xa))*(ya-mean(ya))) #get the covariance

+ cora[it] <- sum( (xa-mean(xa))*(ya-mean(ya)))/

+ sqrt(sum( (xa-mean(xa))^2)*sum((ya-mean(ya))^2)) #get the correlation

+ }

> mean(cova) #average covariance

[1] -135.4745

> mean(cora) #average correlation

[1] -0.5034081

• We see that both values are smaller than the population values. We
check whether the departures are important with respect to the stan-
dard error that can be expected in this number of simulations.

We first consider the average covariance (mean(cova)) and compare it to
the true (population) value (cov(xi,yi)). The average covariance is a
random variable, if we repeated the simulation (all the 10000 runs), we
would get a different value. Assume that the distribution of the average
covariance is approximately normal, we estimate its variance (variance
of the mean of n i.i.d variables is the variance of the variable, divided
by n. In our case, n represents the number of simulation steps). The
null hypothesis to be checked is: H0 : the average covariance equals the
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population value. The departure from this null hypothesis is checked
using the t test.

> (mean(cova)-cov(xi,yi))/sqrt(var(cova)/runs)

[1] 1.509540

This results was expected - we have theoretically shown that the es-
timator of covariance is unbiased. We repeat the procedure for the
covariance:

> (mean(cora)-cor(xi,yi))/sqrt(var(cora)/runs)

[1] 6.66459

The departure for the correlation is statistically much more significant,
we conclude that it has not happened due to random variation, but
rather due to the fact that the estimator is biased.
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