
2.3 Sampling plan optimization

We wish to estimate the average weight of patients with hypertension in
the age group 60 to 80 years, we know that the weight differs considerably
according to gender, denote the average weight asµ1 for men and µ2 women.
The time and money avaiable for this research allow us to include a sample of
size 100. We know that the proportion of men and women with hypertension
differs in the population, denote the proportion of men by d. We wish to
know how to split our sample size between men and women to ensure the
smallest possible standard error. Assume that the standard deviation of the
weigth of men is larger than the standard deviation of the weight of women
by factor k.

• Find an unbiassed estimator of the population mean

• Express the standard error using the subsample sizes (use n1 to denote
the number of men and n2 to denote the number of women in the
sample).

• Let σ1 = kσ2. Find the subsample sizes that minimizes the standard
error. Calculate n1 for k = 1 and k = 2, assume that the proportion of
men equals 0, 7.

Understanding the ideas in R:

• Choose sensible values for all the parameters and generate data. Graf-
fically show how values of n1 affect the quality of your estimate for
various values of d and k.

2.4 Simple random sample from a finite population,
second attempt

Consider again a simple random sample of size n from population N , denote
the values in the population as xi; i = 1, . . . , N , and the population mean
and variance as µ and σ2, respectively. Define the random variable Ii =
I[i is included in the sample] and write the estimator of the population mean µ as

C = 1
n

∑N
i=1 Iixi.

• What is the sum
∑N

i=1 Ii? What is the probability P (Ii = 1)?

1



• Calculate var(Ii) and cov(Ii, Ij).

• Show that the variance of the estimator equals var(C) = σ2

n
N−n
N−1

2.5 A more complex sampling scheme

We wish to estimate the achievement of Ljubljana pupils on a test written
in several countries. We split the population of N = 2800 7th grade pupils
by schools (K = 46). On the first step, we randomly (independently of the
number Ni of pupils in school i) sample k = 10 schools, on the second step,
we choose a sample of n = 15 on each of the 10 schools. Let µ denote the
population mean test score and let µi denote the mean of each school. The
two sampling steps are independent.

• Find an unbiased estimator of µ.

• How would you estimate the population mean if the all schools were of
equal size L?

• Is the sample size at each school important for the bias of the estimator?

• Express the variance of the estimator using the variance and covariance

• Denote the variance within each school as σ2
wi = 1

Ni

∑Ni

j=1(xij − µi)
2.

Find the expressions for var(IiX̄i) and cov(IiX̄i, IjX̄j).

• Derive the formula for the variance of the estimator in the case when
all values Ni equal L and the variance within schools is the same for
all the schools. Denote the between schools variance as σ2

b .

Understanding the ideas in R:

• Try checking all the results in R.

2.6 Estimation of covariance

A course was given to a random sample of n employees in a company of size
N . At the end of the course, the new knowledge was tested. The company
wishes to decide whether the course is sensible for all the individuals, so they
wish to estimate the correlation between the age of an employee (Xi) and
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the test score (Yi).
For each individual from the sample, we have a pair of random variables
(Xi, Yi), i = 1 . . . n.

• Explain that the value cov(Xi, Yj) is equal for any i 6= j.

• Denote γ = cov(Xi, Yi). Calculate the covariance cov(Xi, Yj) for i 6= j.

• How would you estimate the correlation? What do we know about the
bias of this estimator?

Understanding the ideas in R:

• To check whether the estimate is unbiased, we use a simulation:

We first generate a population of size N = 300, the samples shall be of
size n = 10. Let the age (X) be distributed uniformly between 25 and
65, and the success negatively associated with age, so that it on average
equals 100 − age (we assume that the residuals from this average are
normally distributed with standard deviation 20)

> set.seed(1)

> xi <- runif(300)*40+25 #300 individuals, aged 25-65

> yi <- 100 - xi + rnorm(300)*20 #the result on the test for the population

> cov(xi,yi) #population covariance

[1] -136.8110

> cor(xi,yi) #population correlation

[1] -0.5207052

> runs <- 10000 #number of simulation runs

> cova <- cora <- rep(NA,runs) #prepare the space for the results

> for(it in 1:runs){ #in each simulation run, do

+ inx <- sample(1:length(xi),size=10,replace=F) #choose a sample of 10

+ xa <- xi[inx] #look at their ages

+ ya <- yi[inx] #look at their test results

+ cova[it] <- 1/9*299/300*

+ sum( (xa-mean(xa))*(ya-mean(ya))) #get the covariance

+ cora[it] <- sum( (xa-mean(xa))*(ya-mean(ya)))/

+ sqrt(sum( (xa-mean(xa))^2)*sum((ya-mean(ya))^2)) #get the correlation

+ }

> mean(cova) #average covariance

[1] -135.4745
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> mean(cora) #average correlation

[1] -0.5034081

• We see that both values are smaller than the population values. We
check whether the departures are important with respect to the stan-
dard error that can be expected in this number of simulations.

We first consider the average covariance (mean(cova)) and compare it to
the true (population) value (cov(xi,yi)). The average covariance is a
random variable, if we repeated the simulation (all the 10000 runs), we
would get a different value. Assume that the distribution of the average
covariance is approximately normal, we estimate its variance (variance
of the mean of n i.i.d variables is the variance of the variable, divided
by n. In our case, n represents the number of simulation steps). The
null hypothesis to be checked is: H0 : the average covariance equals the
population value. The departure from this null hypothesis is checked
using the t test.

> (mean(cova)-cov(xi,yi))/sqrt(var(cova)/runs)

[1] 1.509540

This results was expected - we have theoretically shown that the es-
timator of covariance is unbiased. We repeat the procedure for the
covariance:

> (mean(cora)-cor(xi,yi))/sqrt(var(cora)/runs)

[1] 6.66459

The departure for the correlation is statistically much more significant,
we conclude that it has not happened due to random variation, but
rather due to the fact that the estimator is biased.
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