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Some literature

1 David Collett. Modelling Survival Data in Medical Research.
Chapman and Hall 2003.

2 David W. Hosmer, Stanley Lemeshow , Susanne May. Applied
Survival Analysis. Wiley-Interscience 2008.

3 Melinda Mills. Introducing Survival and Event History Analysis.
SAGE 2011.

Stare (SLO) Event History/Survival Analysis 2 / 185



Characterization of processes we are interested in

1 there is a collection of units, each moving among a finite number
of states;

2 changes (events) may occur at any point in time;
3 measurements are often (almost always) censored.
4 there are factors, possibly time-dependent, influencing the events.
5 effects of covariates may change in time.
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In short ...

In event history analysis we are interested in time to a certain event.
Or, putting it differently, we are interested in time between two states.
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Examples of events are:

job changes
regime changes
promotions
marriages, divorces
time in office
crimes, arrests
equipment failures
deaths, remissions ...

For now we will assume there can be only ONE event per subject, all
events being of the SAME TYPE.
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Other names for Event History/Survival Analysis are

Failure Time Data Analysis
Reliability Analysis
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Some examples of papers

Stare (SLO) Event History/Survival Analysis 7 / 185



Stare (SLO) Event History/Survival Analysis 8 / 185



Censoring

Often times are not fully observed.

the study may end before the event occurs
a person may be lost during observational period
another event may prevent the event of interest to occur (e.g.
death in a car accident of a diseased person)

Such observations are called censored.
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A typical situation
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Censoring

The need for special methods comes (mostly) from censoring. There
are different types of censoring.

T - time variable of interest (time to event)

C - censoring variable.

Right censoring: we only see min(Ti ,Ci)
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Types of censoring

Type I: censoring time fixed in advance (all Ci equal)
Type II: data are censored after r events (when a given proportion
fails)
Type III: random censoring (most common)
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Why is censoring a problem

With censored data we can’t even calculate a simple arithmetic mean
(in the usual way) or draw a histogram.

So, the situation seems pretty much hopeless.

Luckily, it is not, although it took some time to come up with methods
that deliver want we want.

What do we want?
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The Goals of Event History Analysis

1 Estimation of the distribution (survival) function.
2 Comparison of distribution (survival) functions.
3 Finding association between the outcome (survival time) and

prognostic variables.
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Survival function - T continuous

T a non-negative continuous random variable representing the
survival times in a population

F (t) distribution function of T
f (t) density of T .

The (cumulative) distribution function is

F (t) = P(T ≤ t) =

∫ t

0
f (x)dx .

The distribution function gives the proportion of people having the
event until time t .
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Survival function - T continuous

In EHA we are looking at survival function

S(t) = P(T > t) = 1− F (t) =

∫ ∞
t

f (x)dx .

The survival function gives the proportion of people NOT having the
event (e.g. surviving) until time t .
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Survival function and distribution function
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Survival function - T continuous

The function S(t) is continuous from right.

●

td t

S(t)

1
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Hazard function (transition rate) - T continuous

λ(t) = lim
∆t→0+

P(t ≤ T < t + ∆t |T ≥ t)
∆t

.

Note that this is different from the definition of the density which is

f (t) = lim
∆t→0+

P(t ≤ T < t + ∆t)
∆t

.

Do you distinguish between the probability in the definition of f (t) and
the conditional probability in λ(t)?
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Relations among S(t) and λ(t) - T continuous

Remembering that P(A|B) = P(AB)/P(B) we can deduce

λ(t) =
f (t)
S(t)

= −d ln S(t)
dt

(1)

and from this

S(t) = e−
∫ t

0 λ(x)dx . (2)

So, if we have the hazard, we have the survival function!!
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Survival function - T discrete

T is now a discrete random variable taking values

a1 < a2 < · · ·

The corresponding probability function is

f (ai) = P(T = ai), i = 1,2, . . .

and the survival function is

S(t) =
∑

j|aj>t

f (aj)

(not a very useful expression!)
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Hazard function (transition rate) - T discrete

Hazard is defined as the conditional probability of the event at ai given
that the event had not occurred before ai . So

λi = P(T = ai |T ≥ ai)

Cumulative hazard is
Λ(t) =

∑
j|aj≤t

λj .

Note: cumulative hazard is a sum of conditional probabilities, but it is
NOT a probability. It can be VERY large!
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Relations among S(t), f (t) and λ(t) - T discrete

From the definition of the hazard function we have

λi = P(T = ai |T ≥ ai) =
f (ai)

S(a−i )

where we write S(a−) for limt→a− S(t).

The connection between the survival function and the hazard function
is much more important. Let aj ≤ t < aj+1. Then

S(t) = P(T > a1,T > a2, . . . ,T > aj)

= P(T > a1|T ≥ a1)P(T > a2|T ≥ a2), . . . ,P(T > aj |T ≥ aj)

=
∏

i|ai≤t

(1− λi) (3)
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Measures of central tendency - the mean

By definition the mean is

E(T ) =

∫ ∞
0

tf (t)dt ,

and with some effort we can show that

E(T ) =

∫ ∞
0

S(t)dt
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Measures of central tendency - the mean
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Measures of central tendency - the mean

The mean residual time is

mrt(u) = E(T − u|T > u),

for which we have

mrt(u) =

∫∞
u S(t)dt

S(u)
.

Nobel Prize winners, Academy award winners, famous conductors,
Slovenian pension reform ...
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Different means for the given example

mean = 73.9

restricted mean at 65 = 61.9

residual mean (conditional on being 65) = 15.3
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Measures of central tendency - the median

The median is the value τ , for which

S(τ) = 0.5.
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Measures of central tendency - the median
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Likelihood function

Let C be a random variable representing censoring times. Denote the
density of T by f and its survival function by S. Every individual thus
has survival time Ti and censoring time Ci . We observe the pair
(Yi ,δi), where

Yi = min(Ti ,Ci) and δi =

{
1 if Ti ≤ Ci
0 if Ci < Ti .
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Likelihood function

If we observed n individuals, we have n realizations of the random
variable Y , giving values yi , and we can try to write the likelihood of
this event.

If δi = 1 (event at yi ), then at yi we require high density f (yi).

If δi = 0 (no event at yi ), then at yi we require high probability of that
person still not having the event (e.g. still alive), meaning that his
survival, S(yi), function should be as high as possible.
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Likelihood function

Both requirements can be united in the requirement of maximizing the
expression

f (yi)
δi S(yi)

1−δi .

The product of these values for all i gives us the likelihood of the
observed event

L =
n∏

i=1

f (yi)
δi S(yi)

1−δi . (4)

and taking into account (1), we get

L =
n∏

i=1

λ(yi)
δi S(yi). (5)
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Parametric models - Exponential distribution

The simplest function to assume for the hazard function is a constant,

λ(t) = λ > 0

on the domain of T .

It follows that the conditional probability of an event in a given interval
does not depend on the beginning of the interval. This property is
sometimes called the lack of memory property.

The survival function, the density and the distribution function are

S(t) = e−λt , f (t) = λe−λt and F (t) = 1− e−λt .

This means that T has an exponential distribution.
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Graphs of exponential survival function for λ = 1,2,3
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Parametric models - Weibull distribution

Exponential distribution is not very useful because of the constant
hazard assumption. It is much more realistic to assume that the hazard
is either decreasing or increasing. Such a hazard can be modelled as

λ(t) = λγ(λt)γ−1,

where λ and γ are positive constants. For γ < 1 the hazard is
monotonically decreasing, and for γ > 1 it is increasing. The survival
function is

S(t) = e−(λt)γ
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Graphs of the Weibull survival function for γ = 0.5,1,3
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Parametric models - Weibull distribution

From
S(t) = e−(λt)γ

we see that
log[− log S(t)] = γ(log t + logλ).

If we have an estimate of S(t), then the graph of log[− log Ŝ(t)] versus
logarithm of time should be approximately a straight line.
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Graphical check of the fit for the Weibull distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stare (SLO) Event History/Survival Analysis 40 / 185



Graphical check of the fit for the Weibull distribution
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But where do curves like this come from?
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Estimating the survival function

If there was no censoring, we could easily estimate the survival
function at time t by

Ŝ(t) =
Number of cases for which T > t

Number of all cases

But what if there is censoring? Do we just throw those observations
away? It should be obvious that this would mean underestimating the
survival function (or overestimating proportion of events), since we
would use the data on those that suffered the event (died, say), but not
on those censored (even if they stayed event-free (lived) for long).
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Back to our example
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We need something better!
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Estimating the survival function parametric approach

One possibility is to assume a certain parametric distribution for the
survival function and then estimate the parameters using the maximum
likelihood method.

We will briefly look at the simplest possibility.
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Estimating the survival function - the exponential
model

Assume that T has exponential distribution and that we have n
measured times ti , of which some are censored. We will estimate the
parameter λ using the maximum likelihood method.

For the exponential distribution we have (5)

L =
n∏

i=1

(λe−λti )δi (e−λti )1−δi =
n∏

i=1

λδi e−λti .

Taking logarithms, differentiating with respect to λ and equating the
result to 0 (extreme values only occur at points where the derivatives
are 0!), we see that the maximum likelihood estimate of λ is

λ̂ =
d∑
yi
,

where d is the number of all events (deaths).
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Illustration of the λ̂ estimator in the exponential model

total observation time
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Estimating the survival function

The exponential model is of course very simple, and most of the time
unrealistic in describing actual distributions.

There are many other parametric possibilities, much more flexible than
the exponential model, but guessing the right distribution is usually
hard, or even impossible. It can be safely said that distributions,
typically found in political and social sciences (and also in medicine),
do not have nice parametric forms. It is much better to use a
nonparametric alternative.
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Estimating the survival function
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Estimating the survival function
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Estimating the survival function

More formally, we are using the formula for the probability of a product
of events.

If A and B are two events, then the probability of the product AB is

P(AB) = P(A)P(B|A)

where P(B|A) is the conditional probability of B given A.
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Estimating the survival function
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Estimating the survival function
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Estimating the survival function

We can use this principle in calculating survival even with censored
data.

We first divide the time scale into intervals in such a way that events or
censorings occur on the boarders of the intervals.

Then we calculate (conditional) probabilities of surviving each interval
and obtain probability of surviving any time by simply multiplying the
probabilities of survival up to the given point in time.

The method is named after Kaplan and Meier.
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The Kaplan-Meier method
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The Kaplan - Meier curve for our example
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Kaplan-Meier method more formally

Let us now try to estimate S(t) without assuming any particular
functional form.

Let 0 < t1 < t2 < · · · < tk <∞ be measured times of events in a
sample of size n. Obviously k ≤ n. Let di be the number of events at ti
and let ci represent the number of censored observations in the
interval [ti ,ti+1), i = 0, . . . ,k , and the exact censoring times being
ti1, . . . ,tici . We have t0 = 0 in tk+1 =∞.

Stare (SLO) Event History/Survival Analysis 55 / 185



Kaplan-Meier method more formally
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Kaplan-Meier method more formally

Since we only have information about event times at ti , the estimated
function will have to be a (right continuous) step function, with steps at
measured times of events. Probability of an event at ti is

P(T = ti) = S(t−i )− S(ti),

and the probability of not experiencing an event before or at ti is S(ti).
Since S(t) is a step function, we have S(tij) = S(ti) for j = 1, . . . ,ci ,
meaning that the function does not change at the censoring times. We
can then write the probability (and therefore the likelihood) of the
observed values as

L =
k∏

i=0

[S(t−i )− S(ti)]di

ci∏
j=1

S(tij)

 =
k∏

i=0

[S(t−i )− S(ti)]di S(ti)ci
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Kaplan-Meier method more formally

Remembering that S(t−i ) =
∏i−1

j=1(1− λj) and S(ti) =
∏i

j=1(1− λj) and
bearing in mind that the first factor in L is equal to 1 (why?), we get

L =
k∏

i=1

λdi
i

i−1∏
j=1

(1− λj)
di

i∏
j=1

(1− λj)
ci


=

k∏
i=1

λdi
i (1− λi)

ci

i−1∏
j=1

(1− λj)
di +ci

=
k∏

i=1

λdi
i (1− λi)

ni−di . (6)

In the last simplification we used the fact that ni =
∑k

j=i(di + ci) and
that in this sum we are missing di .
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Kaplan-Meier method more formally

Maximizing L (taking logarithms, taking derivatives with respect to λi ,
equaling those derivatives to 0 and solving the respective equations)
gives us the following estimates of λi

λ̂i =
di

ni

so that

Ŝ(t) =
∏

i|ti≤t

ni − di

ni
. (7)
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Kaplan-Meier method - final result

Estimates of λi are

λ̂i =
di

ni

and estimator of the survival function is

Ŝ(t) =
∏

i|ti≤t

ni − di

ni
. (8)
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Kaplan-Meier method more formally

We first used ‘common sense’ to get to (8). The formula (8) simply
says that to calculate the probability of surviving past t we have to
multiply the probabilities of surviving the intervals which we used to
partition the time scale. This partition is done in such a way that each
interval contains only one t (one day) at which an event was observed.
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Example: estimation of survival curves

We analyse data on the duration of United Nation (UN) peacekeeping
missions from 1948 to 2001.

There were 54 peacekeeping missions, 15 were still ongoing at the
end of the study (censoring).

The figure shows the Kaplan-Meier survival curve along with the
exponential model, Weibull model and piece-wise exponential model.
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Example: estimation of survival curves
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Example: estimation of survival curves

We now analyse data on longevity of government cabinets
(parlgov.org).

We’re interested in the time until a major government change.

Changes are defined in the following way:

1 any change in the set of parties holding cabinet membership;
2 any change in the identity of the prime minister;
3 any general election;
4 any substantively meaningful resignation.
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Example: ‘survival’ of governments in Germany
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Example: ‘survival’ of governments in Denmark
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Variance of Ŝ(t)

We will use the delta method to calculate the variance of Ŝ(t). The
method helps in calculating var(g(Y )) when we know var(Y ) = σ2 and
E(Y ) = µ. Then we have (more or less precisely)

var(g(Y )) ≈ (g′(µ))2σ2.
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Variance of Ŝ(t)

We start with the equation

Ŝ(t) =
∏

i|ti≤t

(1− λ̂i).

Taking logarithms
ln Ŝ(t) =

∑
i|ti≤t

ln(1− λ̂i)

we calculate

var(ln Ŝ(t)) =
∑
i|ti≤t

(
1

1− λ̂i

)2

var(λ̂i) =
∑
i|ti≤t

(
1

1− λ̂i

)2 λ̂i(1− λ̂i)

ni

=
∑
i|ti≤t

λ̂i

(1− λ̂i)ni
=
∑
i|ti≤t

di

(ni − di)ni
.
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Variance of Ŝ(t)

Since S(t) = eln(S(t)), we have (again using the delta method)

var(Ŝ(t)) = [Ŝ(t)]2 var(ln Ŝ(t)) = [Ŝ(t)]2
∑
i|ti≤t

di

(ni − di)ni
. (9)

Formula (9) is called the Greenwood’s formula.
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Variance of Ŝ(t)

The confidence interval (at a given t) for Ŝ(t) is then:

[Ŝ(t)− zαse(Ŝ(t)),Ŝ(t) + zαse(Ŝ(t))],

where se(Ŝ(t)) is the standard error obtained with the Greenwood’s
formula.
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Illustration - survival after myocardial infarction
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Illustration - ‘survival’ of governments in Germany
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Other ways of calculating var(Ŝ(t))

The confidence interval obtained using the Greenwood formula is
symmetric and can therefore be greater than 1 or smaller than 0. We
can avoid this in the following way.

We introduce L(t) = ln(− ln(S(t))) and calculate the confidence
interval for L(t), again using the delta method. Say this is
[L̂(t)−A,L̂(t) + A]. Since S(t) = e−eL(t)

, the confidence interval for Ŝ(t)
is

[e−eL̂(t)+A
,e−eL̂(t)−A

],

which can also be written as

[Ŝ(t)eA
,Ŝ(t)e−A

].

This interval is always between 0 and 1.

Note: what we did above was to calculate the confidence intervals for
Ŝ(t) at any given t ! This is NOT the same as a confidence interval for
the whole Ŝ(t)!
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Other ways of calculating var(Ŝ(t))
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Different confidence intervals for a larger dataset
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Life tables

Year N D L
1 110 5 5
2 100 7 7
3 86 7 7
4 72 3 8
5 61 0 7
6 54 2 10
7 42 3 6
8 33 0 5
9 28 0 4

10 24 1 8
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Life tables
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Plotting survival curves from life tables
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Nelson - Aalen estimate of the survival function

S(t) can be estimated by first estimating Λ(t), the cumulative hazard,
and then calculating Ŝ(t). The cumulative hazard is obtained as a sum
of hazards

Λ̂(t) =
∑
i|ti≤t

λ̂i =
∑
i|ti≤t

di

ni

and the estimate of the survival function is then

Ŝ(t) = e−Λ̂(t).

We will skip the calculation of the variance of this estimate (for which
we would again use the delta method). But let me point out that this
estimate, contrary to the Kaplan Meier estimate, will never be 0.

Stare (SLO) Event History/Survival Analysis 80 / 185



Comparison of survival curves
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Comparison of survival curves
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The statistical test for the null hypothesis (that the two samples come
from the same population) is based on the usual idea:

Under the null hypothesis we expect that people will be dying
proportionally to the group size.

Based on this we calculate the expected number of deaths in each
group and compare it to the observed number of deaths.

The name of the test is log rank test for some strange reasons.

The p-value for the log rank test for the previous example is 3.1 · 10−9.
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Comparison od survival functions

Let us first remember this (why? - well, you’ll see!): if an urn contains b
black balls and c balls of some other colour, then the probability that in
a random sample of n balls k of them will be black is

Pn(B = k) =

(b
k

)( c
n−k

)(N
n

) ,

where N = b + c. This distribution is called the hypergeometric
distribution. If a random variable B is distributed according to the
hypergeometric distribution, then its expected value and variance are

E(B) = np, var(B) =
npq(N − n)

N − 1
.

Here we used p = b/N and q = c/N.
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Comparison od survival functions

Now let’s look at a 2× 2 contingency table.

n11 n12 n1.
n21 n22 n2.
n.1 n.2 n..

Dots denote summation over relevant indices.

If we can assume the marginal frequencies fixed, then by choosing
one of the values n11, n12, n21 and n22 we also fix the other three. In
other words, the probability distributions of the random variables N11,
N12, N21 and N22 are all the same.
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Comparison od survival functions

And how is N11 distributed? We can look at the problem in the
following way: when sampling n1. persons from n.. persons (without
replacement), the probability to choose n11 persons from n.1 persons
and the rest, that is n12 = n1. − n11 persons, from n.2 persons, is equal
to

Pn1.(N11 = k) =

(n.1
n11

)(n.2
n12

)(n..
n1.

) ,

With this notation, the expected value and the variance of N11 are

E(N11) = n1.
n.1
n..
, var(N11) =

n1.n2.n.1n.2
n2
..(n.. − 1)

.

The denominator in the expression of variance has the sums of rows
and columns.
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Comparison od survival functions

How can the above help in comparing survival curves? Assume we
were observing two groups of people of sizes n1 and n2, and assume
also that d1 and d2 people have experienced the event (d is usually
used for death, but the event can of course be anything). Let’s put this
data in a table:

d1 n1 − d1 n1
d2 n2 − d2 n2
d n − d n

So we have
E(D1) =

n1d
n

and
var(D1) =

n1n2d(n − d)

n2(n − 1)
.
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Comparison od survival functions

If the null hypothesis is true, we have

χ2
MH =

[d1 − n1d/n]2

n1n2d(n−d)
n2(n−1)

∼ χ2
1

MH stands for Mantel in Haenszel, two statisticians who are credited
with this test.

A table like the one above can be constructed at every event time. If
we index times with j and there are k different times, the test of the null
hypothesis is

χ2
logrank =

[∑k
j=1(d1j − n1jdj/nj)

]2

∑k
j=1[n2jn1jdj(nj − dj)/[n2

j (nj − 1)]]

For some obscure reasons the test is called the log-rank test. It can
be naturally extended to the several groups case.
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Example: log-rank test
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Example cont.: log-rank test

We used log-rank test to test the difference in duration of the mission
for different types of the conflict precipitating a UN peacekeeping force.
There were 30, 14 and 10 missions as a result of a civil war, interstate
conflict and internationalized civil war respectively. P-value obtained
from the log-rank test was 0.0095, so we can reject the null hypothesis
that the duration of the missions for different types is equal.
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Another example: log rank test

Say p < 0.01. What does that mean?
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Regression models

In the chapter on parametric estimation of survival curves we assumed
that our measurements all come from the same distribution.

In real life this is seldom true.

Distributions will often change with values of different variables, which
is why we need to look at conditional distributions.

Stare (SLO) Event History/Survival Analysis 92 / 185



Regression models

When the outcome is a numerical variable, it is common to use the
linear regression model

Y ∼ N (α +
∑

βiXi , σ
2)

This relates the values of Y to the values of Xi . We cannot do this in
survival because of censoring.
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Solution is the hazard function

Just to remind you

λ(t) = lim
∆t→0+

P(t ≤ T < t + ∆t |T ≥ t)
∆t

S(t) = e−
∫ t

0 λ(u)du
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Exponential regression model

If we are confident that a certain distribution applies for our data, we
assume a specific form for the hazard function. This is a parametric
approach. In this course we will only look at the simplest parametric
regression model, the exponential model.

Let X1, . . . ,Xp be variables, sometimes called prognostic factors,
measured on each individual at t = 0.
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Exponential regression model

In an exponential model the hazard is constant, but we can generalize
our model by making this constant dependent on prognostic factors, for
example like this

λ(t ,x) = eβ
′x ,

where β′ = β0, . . . ,βp is a vector of regression coefficients, and we add
1 as the first component of the vector X .

The density f (t ,x) is then given by

f (t ,x) = eβ
′xe−teβ

′x
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Exponential regression model - MI example
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Other possibilities

We will not look at this in any detail, I would just like to mention that in
industrial settings the Weibull model is used a lot.

In socio/political area the piecewise exponential model was popular in
the past.
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Cox model (proportional hazards model)

The basic form of the model looks like this

λ(t ,x) = λ0(t)eβ
′x , (10)

where λ0(t) is the so called baseline hazard, and β and x have the
usual meaning (no β0!).

For two different x values we have

λ(t ,x1)

λ(t ,x2)
= eβ

′(x1−x2), (11)

which is why the model is also called the proportional hazards model.
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Cox model

From (11) we see that the hazard ratio for two subjects whose values
differ by 1 in the i th covariate, with other values of covariates being
equal, is simply exp(βi).

From (11) it also follows that

lnλ(t ,x1)− lnλ(t ,x2) = β′(x1 − x2).

(This has some diagnostic value).
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Cox model and monotone transformations of time

Assume now that T follows the proportional hazards model

λ(t ,x) = λ0(t)eβ
′x .

Then
S(t ,x) = e−eβ

′x ∫ t
0 λ0(u)du = S0(t)eβ

′x
.
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Cox model and monotone transformations of time

Let T ∗ = g(T ), where g is a monotonically increasing function. Let’s
calculate ST∗(t).

ST∗(t) = P(T ∗ > t) = P(g(T ) > t) = P(T > g−1(t)) = ST (g−1(t)).

Then
ST∗(t ,x) = ST 0(g−1(t))eβ

′x

or
λT∗(t ,x) = λT 0(g−1(t))eβ

′x .

This means that T ∗ also follows the proportional hazards model. In
other words, monotone transformations of time change the baseline
hazard, but not exp(β′x). If we’re only interested in coefficients β, then
the true values of the times of events are not important, only their
ranks matter.
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Estimation of coefficients in the Cox model - intuitive
derivation

If you were randomly shooting at the target below, proportions of hits
for different areas would be as shown.
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Estimation of coefficients in the Cox model - intuitive
derivation

These are probabilities of hits, calculated simply as

P(given colour) =
Area(given colour)∑

i Area(colouri)
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Estimation of coefficients in the Cox model - intuitive
derivation

Imagine that the colour hit in the first try is removed from the target and
we are shooting at the target with colours that are left

7.1%
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Estimation of coefficients in the Cox model - intuitive
derivation

And so on . . .
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Estimation of coefficients in the Cox model - intuitive
derivation

If we had a model for the area, with some unknown parameters, we
could estimate those parameters by maximizing the product of these
probabilities!
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Estimation of coefficients in the Cox model - intuitive
derivation

We can also imagine that areas represent hazards of people we are
following.
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Estimation of coefficients in the Cox model - intuitive
derivation

We can then calculate our probabilities at these different times

Pj(given colour,tj) =
Area(given colour,tj)∑

i Area(colouri ,tj)
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Estimation of coefficients in the Cox model - intuitive
derivation

If we had a model for the size of the areas, say

Pj(given colour,tj) = f (tj ,β)

we could use the method of maximum likelihood to estimate β.

The product ∏
j

Pj(given colour,tj) =
∏

j

f (tj ,β)
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Estimation of coefficients in the Cox model - formal
derivation

Say that we measured (Ti ,δi ,Xi) on n subjects, where

Ti are measured times, censored or not,
δi are indicators of censoring (1 = event, 0 = censoring),
Xi is a vector of prognostic variables.

Let t1, . . . ,tk be ordered, distinct times of events, so that at any ti only
one event occurs. Denote by R(t) = {i : ti ≥ t} a set of subjects still at
risk at t .
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Estimation of coefficients in the Cox model

Let’s write down the probability that at time ti the subject i of those in
R(ti) experiences the event.

P((i fails at ti |i in R(ti)) | one failure from R(ti))

=
P(i fails|i in R(ti))∑

j∈R(ti ) P(j fails|j in R(ti))

=
λ(ti ,xi)∑

j∈R(ti ) λ(ti ,xj)

=
eβ
′xi∑

j∈R(ti ) eβ′xj
(12)

The last expression follows because the baseline hazards cancel out.
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Estimation of coefficients in the Cox model

Cox suggested that the product of such probabilities is used as a
criterion for estimating the parameters.

L(β) =
k∏

i=1

eβ
′xi∑

j∈R(ti ) eβ′xj
=

n∏
i=1

[
eβ
′xi∑

j∈R(ti ) eβ′xj

]δi

. (13)

The criterion (13) is called the partial likelihood, but quite some water
has passed under the bridges before it was proven that the partial
likelihood can be treated as the full likelihood. The Cox model was well
used in practice before we had a rigorous proof.
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Estimation of coefficients in the Cox model

It is easy to see that (13) is indeed only a part of the full likelihood. The
full likelihood, as we know from (5), is

L(β) =
n∏

i=1

λ(ti ,xi)
δi S(ti ,xi).

If each factor in the above product is multiplied and divided by[∑
j∈R(tj ) λ(tj ,xj)

]δi
, we get

L(β) =
n∏

i=1

[
λ(ti ,xi)∑

j∈R(tj ) λ(tj ,xj)

]δi
 ∑

j∈R(tj )

λ(tj ,xj)

δi

S(ti ,xi)

from where we see that the expression (13) is rather far from the full
likelihood. Cox has heuristically shown that (13) contains almost all the
information about the coefficients β and, as already mentioned, he was
later proven right.
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Estimation of coefficients in the Cox model

So, if we can consider (13) as the usual likelihood function, we can use
the well beaten path to the estimation of parameters. First we take
logarithms

`(β) = ln
n∏

i=1

[
eβ
′xi∑

j∈R(ti ) eβ′xj

]δi

=
n∑

i=1

δi

β′xi − ln

 ∑
j∈R(ti )

eβ
′xj


and then derivatives. If β has p components, we get for each
k = 1, . . . ,p

U(βk ) =
∂

∂βk
`(β) =

n∑
i=1

δi

[
xi k −

∑
j∈R(ti ) xj keβ

′xj∑
j∈R(ti ) eβ′xj

]
.
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Estimation of coefficients in the Cox model

These derivatives are then equated to 0, and the corresponding
equations solved (numerically).

(Mention ties here)

We now have our estimates of the coefficients. The next two results
follow from the standard likelihood theory

β̂k − βk

se(β̂k )
∼ N(0,1)

var(β̂k ) ≈

(
− ∂2

∂β2
k
`(β)

)−1

We can use the above to calculate the confidence intervals for β.
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Hypotheses testing - Likelihood ratio

Assume we measured p + q variables

X1, . . . ,Xp,Xp+1, . . . ,Xp + q

and that we want to compare models

λ(t ,X ) = λ0eβ1X1+···+βpXp

and
λ(t ,X ) = λ0eβ1X1+···+βp+qXp+q .
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Hypotheses testing - Likelihood ratio

The hypothesis H0 : βp+1 = · · · = βp+q = 0 can be tested using the
likelihood ratio test in which we use the fact that

−2
[
ln(L̂(1))− ln(L̂(2))

]
∼ χ2(q),

meaning that the left hand side expression above follows the χ2

distribution with q degrees of freedom (we took this from the general
theory of testing). Here L̂ is the maximized likelihood, and the numbers
in parentheses refer to the respective models without and with the last
q variables.
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Hypotheses testing - The Wald test

The null hypothesis for each variable separately

H0 : βj = 0

is usually tested using the Wald test which involves calculating

Z =
β̂j

se(β̂j)
or χ2 =

(
β̂j

se(β̂j)

)2

.
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Hypotheses testing - The Wald test

Z has the standardized normal distribution, and χ2 the χ2 distribution
with one degree of freedom. If we want to test the hypothesis about
more than one coefficient being zero (we’re interested in a group of
variables or in a categorical variable which is represented with more
dummy variables), we use the χ2 test with corresponding k degrees of
freedom (k being the number of the coefficients)

χ2
k = β̂′ var(β̂)−1β̂,

where β̂ is now the corresponding vector of the estimated coefficients,
and var(β̂) their covariance matrix.
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Hypotheses testing - The score test

We’ll skip this one, let me just mention that the derivative of the
logarithm of the likelihood is called the score or score function.
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Estimating the survival function for given values of
covariates

Parametric models give us a complete specification of the hazard
function, from which we can directly calculate the survival function
using (2). In the Cox model the hazard has to be estimated separately.
The method usually used is named after Breslow and is a
generalizations of the Nelson-Aalen estimator of the survival curve.
Another method, a generalization of the Kaplan-Meier estimator, was
proposed by Kalbfleisch in Prentice R has both options implemented.

Stare (SLO) Event History/Survival Analysis 123 / 185



Once we have estimated the baseline hazard, we get the survival
function estimate, given the values of covariates, in the following way

S(t ,x) = e−eβx
∫ t
0 λ0(u)du

= (e−
∫ t

0 λ0(u)du)eβx
= S0(t)eβx
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Cox model for Danish governments

coxph(formula = Surv(time, status) ~ ratio_seats + mean_left_right,
data = par_dnk)

n= 60, number of events= 59

coef exp(coef) se(coef) z Pr(>|z|)
ratio_seats -3.20430 0.04059 1.42884 -2.243 0.0249
mean_left_right 0.05267 1.05408 0.09498 0.554 0.5792

exp(coef) exp(-coef) lower .95 upper .95
ratio_seats 0.04059 24.6383 0.002467 0.6678
mean_left_right 1.05408 0.9487 0.875030 1.2698

Concordance= 0.587 (se = 0.045 )
Rsquare= 0.091 (max possible= 0.998 )
Likelihood ratio test= 5.73 on 2 df, p=0.06
Wald test = 5.72 on 2 df, p=0.06
Score (logrank) test = 5.78 on 2 df, p=0.06
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Cox model for German governments

coxph(formula = Surv(time, status) ~ ratio_seats + mean_left_right,
data = par_deu)

n= 53, number of events= 52

coef exp(coef) se(coef) z Pr(>|z|)
ratio_seats -3.35652 0.03486 1.25906 -2.666 0.00768
mean_left_right 0.26089 1.29809 0.15264 1.709 0.08742

exp(coef) exp(-coef) lower .95 upper .95
ratio_seats 0.03486 28.6892 0.002955 0.4111
mean_left_right 1.29809 0.7704 0.962445 1.7508

Concordance= 0.663 (se = 0.048 )
Rsquare= 0.235 (max possible= 0.997 )
Likelihood ratio test= 14.22 on 2 df, p=8e-04
Wald test = 14.41 on 2 df, p=7e-04
Score (logrank) test = 14.34 on 2 df, p=8e-04
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Modeling techniques

Modeling techniques in the Cox model are really no different than such
techniques are for any other regression model. We’ll not spend much
time on them, but we will mention some basics which are commonly
used with categorical variables and in relaxing the linearity assumption
for the effect of continuous covariates.
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Categorical variables in the Cox model

Example: using the Cox model to compare survival curves

We take stage IV to be the reference category.

Stage Stage I Stage II Stage III
I 1 0 0
II 0 1 0

III 0 0 1
IV 0 0 0

coef exp(coef) se(coef) z p
Stage III -0.316 0.729 0.202 -1.57 0.120
Stage II -0.779 0.459 0.199 -3.92 < 0.001
Stage I -1.203 0.300 0.213 -5.64 < 0.001
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Continuous variables in the Cox model

Let the variable X be continuous. The Cox model assumes linear
association between the logarithm of the hazard and X . This need not
necessarily be true. What do we do? We might try to add the quadratic
term. Then

λ(t ,X ) = λ0(t) exp(β0X + β1X 2).

Other variables are not important here, so let’s forget about them.

With the form of the model above we can test the null hypothesis

H0 : the model is linear in X

versus

the alternative hypothesis

Ha : the model is quadratic in X

by testing

H0 : β1 = 0.
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Continuous variables in the Cox model

We can of course further complicate things by adding terms of a higher
degree, but it usually turns out that polynomials, because of their hills
and valleys, are not the best choice of a functional form. For example,
if the true form is a logarithmic function, then polynomials will be far off.

Instead we may want to try a transformation of X (ln(X ), say). But
guessing the correct transformation can be a difficult task. It is much
better to use splines.
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Continuous variables in the Cox model - splines

Splines are polynomials, defined on the subintervals of the domain of
X and connected at the borders of those intervals. The simplest
splines are linear splines, piecewise linear functions. If the x axis was
partitioned with points a, b and c (call the modes), a linear spline is
defined as

f (X ) = β0 + β1X + β2(X − a)+ + β3(X − b)+ + β4(X − c)+,

where

(u)+ =

{
u, u > 0
0, u ≤ 0.

In the Cox model β0 is of course not needed.
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Continuous variables in the Cox model - splines

Linear splines are simple, but they are not smooth at the joints and
they will also not fit well if the underlying function has strong curvature.
It turns out that one can do well by using polynomials of the third
degree, which are glued in the nodes. For example, again for three
nodes, we have

f (X ) = β0 +β1X +β2X 2 +β3X 3 +β4(X−a)3
+ +β5(X−b)3

+ +β6(X−c)3
+.

Of course we have to bear in mind that using such a procedure with
three nodes we have six variables instead of one (for example
X4 = (X − a)3

+), which has its consequences in sample size
requirements.

Restricted cubic splines

Choice of nodes
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The stratified Cox model

What do we do if the assumption of proportional hazards doesn’t hold
for a certain variable? Example: in a clinical trial we have two groups
of patients, treated with two different treatments. Since we can not
recruit enough patients in one hospital, we run the trial in several
hospitals at the same time (a multi center trial). A weakness of such an
approach is that treatment effects may be different in different centers.
If we want to incorporate this in our model, we have to introduce the
variable center into the model. But, its effect may not necessarily be
proportional, and this causes problems.
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The stratified Cox model

We can solve the problem by allowing different baseline hazards in
different centers. So, if we have M centers, the model is

λm(t ,x) = λ0m(t)eβx , m = 1, . . . ,M.

The partial likelihood is changed in such a way that each individual is
only compared to the patients from the same center. In general we talk
about strata and we call the above model the stratified Cox model.

PL =
M∏

i=1

ni∏
j=1

(
eβxij∑

k∈Ri (tij ) eβxik

)δij
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Time dependent variables in the Cox model

Variables that can influence the time until the event, can change in
time.

a person can stop smoking (and start again),
a patient may have a transplant,
marital status can change ...
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Time dependent variables in the Cox model

If such changes have an effect on survival time, then a model which
takes into account only the initial values, will not adequately reflect the
influence of these variables. When we want to stress that we allow
time dependent variables in the model, we write

λ(t ,x(t)) = λ0(t)eβx(t).

Of course, only some components of x(t) may be time dependent.
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Time dependent variables in the Cox model

The conditional probabilities at any time point are the same as before,
except that the values of x(t) may change for some individuals. This
has to be accounted for in the calculation of the likelihood.

And for this we have to know x(t) at all event times! (important to know
when planning!)
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Time dependent variables in the Cox model

Example: Assume now that we have three patients who were
receiving treatment like described in the table below.

Patient Time Treatment
(months)

1 6 A always
2 18 A one year, then B
3 30 B two years, then A

Let x(t) = 0/1, if treatment A/B. Then the partial likelihood is

PL =
eβx1(t1)

eβx1(t1) + eβx2(t1) + eβx3(t1)
× eβx2(t2)

eβx2(t2) + eβx3(t2)
× eβx3(t3)

eβx3(t3)

=
eβ×0

eβ×0 + eβ×0 + eβ×1 ×
eβ×1

eβ×1 + eβ×1 ×
eβ×0

eβ×0

In short, this is just the usual partial likelihood where we are careful to
enter values of variables as they are at each time point.
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Checking the proportional hazards assumption

The proportional hazards assumption is of course very important and
has to be checked. There are different possibilities, and we will look at
three here.

To simplify the notation, let X now be just a single variable. If the effect
of X does not change in time, then the coefficient β2 in the model

λ(t ,x) = λ0(t)eβ1x+β2xt

should be 0. In other words, the test for this coefficient should not be
significant. If this is not true, the proportional hazards assumption for
this variable does not hold.
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Checking the proportional hazards assumption

Another possibility is graphical. Since we have

S(t ,x) = S0(t)eβx
(14)

we get for two different x1 and x2

ln(S(t ,x1)) = eβx1 ln(S0(t)) and ln(S(t ,x2)) = eβx2 ln(S0(t))

and from here

− ln(S(t ,x1)) = −eβx1

eβx2
ln(S(t ,x2)).

We put minuses so that we have positive quantities on both sides of
the equation. In the logarithm of survival we recognize the cumulative
hazard (or do we?).
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Checking the proportional hazards assumption

The above tells us that cumulative hazards are in linear relationship,
where the coefficient is the hazard ratio between subjects with
covariates x1 and x2.

We can of course take the logarithm of equation 14 twice, and then we
have

ln(− ln(S(t ,x))) = βx + ln(− ln(S0(t)))
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Example: checking the fit for MI data (try to guess!)
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Checking the proportional hazards assumption -
Schoenfeld residuals

Remember now the derivatives of the log(partial)likelihood for the Cox
model.

If β has p components (we have p covariates), we get for each
k = 1, . . . ,p

U(βk ) =
∂

∂βk
`(β) =

n∑
i=1

δi

xik −
∑

j∈R(ti )

xjk
eβ
′xj∑

j∈R(ti ) eβ′xj

 .
In the expression in the brackets we recognize the difference between
the value of the k th covariate of the subject who had the event at time
ti and the expected value (average) of those values, given the risk set.
So

xik −
∑

j∈R(ti )

xjkpj = xik − x̄ik
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Checking the proportional hazards assumption -
Schoenfeld residuals

These differences are called Schoenfeld residuals.

Remember, we have residuals for each individual who had the event,
for each covariate).

If the model is correct, than these residuals should vary around 0 when
plotted against time, or around estimated coefficient if such a
coefficient is added to the residuals (which is what most packages give
us).
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Example: checking the fit for the MI data
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Example: good and bad fit

Time

Be
ta

(t)
 fo

r x

0.001 0.0093 0.048 0.23 0.7

4
2

0
2

4
6

Time
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ta

(t)
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r x

0.00088 0.0088 0.13 0.46 0.88 1.9
2

1
0

1
2

3
4
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Schoenfeld residuals - an example

Say we fitted a Cox model with two covariates, gender and age (g and
a).

And say the coefficients that we get are 2 for gender and 0.05 for age.
Our model is then

λ(t ,gender ,age) = λ0(t)e2∗g+0.05∗a.

Stare (SLO) Event History/Survival Analysis 148 / 185



Schoenfeld residuals - an example

We know from (12) that the (conditional) probability of the subject i to
have an event is

e2∗gi +0.05∗ai∑
j e2∗gj +0.05∗aj

where the sum in the denominator is over all the subjects still at risk at
the time of the event.
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Schoenfeld residuals - an example

At a certain time point t we have 5 subjects left with the following
values of the covariates (male = 1, female = 0).

g a probability
1 58 0.27
0 55 0.03
1 45 0.14
0 67 0.06
1 70 0.50

The last column in the table below gives their probabilities of having
the event, calculated using the formula on the previous slide.
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Schoenfeld residuals - an example

What is the expected value of AGE for the person who has the event?

Based on the probabilities given by our model it is

58(.27) + 55(.03) + 45(.14) + 67(.06) + 70(.50) = 62.63

And if the one having the event was the 58 years old male, the
corresponding Schoenfeld residual is 58− 62.63 = −4.63.

The expected value of GENDER is

1(.27) + 0(.03) + 1(.14) + 0(.06) + 1(.50) = 0.91

and the corresponding Schoenfeld residual is 1− 0.91 = 0.09
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Cox model for Danish governments

coxph(formula = Surv(time, status) ~ ratio_seats + left_center_right,
data = par_dnk)

n= 60, number of events= 59

coef exp(coef) se(coef) z Pr(>|z|)
ratio_seats -2.71696 0.06608 1.52449 -1.782 0.0747
left_center_rightcenter -0.75008 0.47233 0.38108 -1.968 0.0490
left_center_rightright -0.12438 0.88305 0.34392 -0.362 0.7176

exp(coef) exp(-coef) lower .95 upper .95
ratio_seats 0.06608 15.134 0.00333 1.3113
left_center_rightcenter 0.47233 2.117 0.22380 0.9968
left_center_rightright 0.88305 1.132 0.45003 1.7327

Concordance= 0.614 (se = 0.045 )
Rsquare= 0.159 (max possible= 0.998 )
Likelihood ratio test= 10.39 on 3 df, p=0.02
Wald test = 9.55 on 3 df, p=0.02
Score (logrank) test = 9.98 on 3 df, p=0.02
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Example: checking the fit for Danish governments data
Schoenfeld residuals − Denmark
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Example: checking the fit for Danish governments data
Schoenfeld residuals − Denmark
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Example: checking the fit for Danish governments data
Schoenfeld residuals − Denmark
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Testing the fit for Danish and German governments

Denmark:

rho chisq p
ratio_seats 0.00595 0.00302 0.956
directionleft 0.16128 1.70641 0.191
directionright 0.14404 1.42915 0.232
GLOBAL NA 2.07069 0.558

Germany:

rho chisq p
ratio_seats 0.210 3.54 0.0598
directionleft 0.153 1.00 0.3170
directionright 0.151 1.11 0.2917
GLOBAL NA 4.99 0.1729
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Time dependent effects

Let us now allow the coefficients in the Cox model to change with time.
Then the model looks like this

λ(t ,x) = λ0(t)eβ(t)x(t).

If we were now to estimate β(t) at each time of an event, we would
have too many parameters in the model, so it is necessary to limit the
number of coefficients to a sensible number. Such estimation is a
difficult problem, an area of active research at this time, here we will
only look at a special case when β(t) changes only once. The
procedure can be generalized to more changes.
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Time dependent effects

Assume that we know that β(t) changes at time τ . Then we can do the
following: we censor all the times that are greater than τ , and we then
estimate β(t). This will give us the coefficient up to the time τ . We then
return to the original data and censor all observations that are less
than or equal to τ . Estimating the coefficient on this data will give us
β(t) for the period after τ . We will of course achieve the same goal if
the variable x , whose coefficient is changing in time, is introduced into
the model like this

λ(t ,x) = λ0(t)eβ1x1(t)+β2x2(t),

where x1 is equal to x until τ and after that it is 0, and x2 is equal to 0
until τ and after that is equal to x . The procedure can be easily
generalized to several changes.
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Frailties

In a real world we can hardly expect all the subjects to be the same,
meaning that their values of T would all come from the same
distribution. We say that the population is heterogeneous.

Assume that each individual has some specific frailty z. Also assume
that this frailty has a multiplicative effect on the hazard, so that

λ(t ,z) = zλ(t).

The survival function is then

S(t ,z) = S(t)z ,

and therefore different for each z. This of course is not surprising,
since Z is simply a prognostic factor. But we have to remember that we
do not really know Z and that we are looking at our subjects as a
homogeneous group.
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Frailties

Let us first calculate the average value of the hazard with respect to Z ,
at a given time t . This is

E(λ(t ,Z )) = λ(t)E(Z ).

Since subjects with larger values of z will experience the event earlier,
then the average value of Z will decrease with time. Assuming that at
t = 0 we have E(Z ) = 1 (we can always do this), we then see that the
ratio between λ(t ,z) and λ(t) decreases when time increases.
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The Gamma function

Γ(a) =

∫ ∞
0

xa−1e−xdx (a > 0)

The gamma distribution has the density

h(x) =
ληxη−1e−λx

Γ(η)

Let us try to calculate the qth moment of the gamma distribution.

E(X q) =

∫ ∞
0

xqh(x)dx =
λη

Γ(η)

∫ ∞
0

xqxη−1e−λxdx =
Γ(η + q)

λqΓ(η)
,

where we introduced a new variable u = λx in the last integral. From
here we easily find the mean and the variance (since
E(X 2) = Γ(η + 2)/(λ2Γ(η)) = (η + 1)η/λ2)

E(X ) =
Γ(η + 1)

λΓ(η)
=
η

λ
var(X ) =

η

λ2
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Frailties

Assume now that
λ(t ,x ,z) = zλ0(t)eβx ,

where the unknown values z come from the gamma distribution with
the density h(z). Of course we also have Λ(t ,x ,z) = zΛ0(t)eβx and
S(t ,x ,z) = e−zΛ0(t)eβx

. Since we do not know z, we shall in fact only
see the marginal distribution, and therefore

S(t ,x) =

∫ ∞
0

S(t ,x ,z)h(z)dz =

∫ ∞
0

e−zΛ0(t)eβx ληzη−1e−λz

Γ(η)
dz.

Some rearranging gives

S(t ,x) =

(
λ

λ+ eβx Λ0(t)

)η
.
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Frailties

If η = λ, the above formula becomes

S(t ,x) =

(
η

η + eβx Λ0(t)

)η
=

1
(1 + ξeβx Λ0(t))η

,

where ξ = 1/η = var(Z ).

From here

f (t ,x) = −S′(t ,x) =
eβxλ0(t)

(1 + ξeβx Λ0(t))η+1

and

λ(t ,x) =
f (t ,x)

S(t ,x)
=

eβxλ0(t)
1 + ξeβx Λ0(t)

=
eβxλ0(t)

1 + var(Z )eβx Λ0(t)
.
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Frailties

We then see that the ratio λ(t ,x)/λ0(t) is smaller if var(Z ) is bigger.
And we see something else from the above formula: that the ratio must
necessarily be decreasing with time, since Λ0(t) must be increasing. It
is only constant when var(Z ) = 0, meaning there is no frailty.

Let X be a binary prognostic variable with values 0 and 1. Let’s look at
the hazard ratio between these two groups. We first have

λ(t ,1) =
eβλ0(t)

1 + var(Z )eβΛ0(t)
in λ(t ,0) =

λ0(t)
1 + var(Z )Λ0(t)

and the ratio is (where we denote eβ with r ) is

λ(t ,1)

λ(t ,0)
=

r + r var(Z )Λ0(t)
1 + r var(Z )Λ0(t)

This means that the ratio is approaching 1 as t →∞.
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Frailties - uniqueness of Z

If we multiply z in λ(t ,x ,z) = zλ0(t)eβx with some constant and divide
λ0(t) with the same number, nothing changes. This means that the
distribution of Z is not uniquely determined. It is common to work with
Z ∼ Γ(η,η), which has the mean equal to 1.
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Repeated events

Examples of repeated (or recurrent) events are: changes of marital
status, changes of job status, arrests, reelections, heart attacks ...

There are different ways of dealing with repeated events:

1 assuming independence (not recommended, but done often)
2 fitting each transition separately
3 using the shared frailty model (used often)
4 using the stratified model where we stratify by event number (less

efficient than frailty, but more general)
5 using the number of previous events as a covariate
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Kidney data

Kidney patients have catheters inserted and time is measured until
infection occurs, or catheter is removed for some other reason
(censored).

variable codes and units
time in days
status 1 for infection, 0 for censoring
age in years
disease 0 = GN (glomerulonephritis)

1 = AN (acute nephritis)
2 = PKD (polycystic kidney disease)
3 = other
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Kidney data

id time status age sex disease frail
1 1 8 1 28 1 Other 2.30
2 1 16 1 28 1 Other 2.30
3 2 23 1 48 2 GN 1.90
4 2 13 0 48 2 GN 1.90
5 3 22 1 32 1 Other 1.20
6 3 28 1 32 1 Other 1.20
7 4 447 1 31 2 Other 0.50
8 4 318 1 32 2 Other 0.50
9 5 30 1 10 1 Other 1.50

10 5 12 1 10 1 Other 1.50

Stare (SLO) Event History/Survival Analysis 168 / 185



Kidney data - simple analysis

coxph(formula = Surv(time, status) ~ age + sex, data = kidney)

n= 76, number of events= 58

coef exp(coef) se(coef) z Pr(>|z|)
age 0.002032 1.002034 0.009246 0.220 0.82607
sex -0.829314 0.436349 0.298955 -2.774 0.00554 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

exp(coef) exp(-coef) lower .95 upper .95
age 1.0020 0.998 0.9840 1.020
sex 0.4363 2.292 0.2429 0.784

Concordance= 0.662 (se = 0.046 )
Rsquare= 0.089 (max possible= 0.993 )
Likelihood ratio test= 7.12 on 2 df, p=0.02849
Wald test = 8.02 on 2 df, p=0.01814
Score (logrank) test = 8.45 on 2 df, p=0.01466
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Kidney data - another simple analysis

coxph(formula = Surv(time, status) ~ age + sex + disease, data = kidney)

n= 76, number of events= 58

coef exp(coef) se(coef) z Pr(>|z|)
age 0.003181 1.003186 0.011146 0.285 0.7754
sex -1.483137 0.226925 0.358230 -4.140 3.47e-05 ***
diseaseGN 0.087957 1.091941 0.406369 0.216 0.8286
diseaseAN 0.350794 1.420195 0.399717 0.878 0.3802
diseasePKD -1.431108 0.239044 0.631109 -2.268 0.0234 *

exp(coef) exp(-coef) lower .95 upper .95
age 1.0032 0.9968 0.98151 1.0253
sex 0.2269 4.4067 0.11245 0.4579
diseaseGN 1.0919 0.9158 0.49238 2.4216
diseaseAN 1.4202 0.7041 0.64880 3.1088
diseasePKD 0.2390 4.1833 0.06939 0.8235

Concordance= 0.697 (se = 0.046 )
Rsquare= 0.207 (max possible= 0.993 )
Likelihood ratio test= 17.65 on 5 df, p=0.003423

Stare (SLO) Event History/Survival Analysis 170 / 185



Kidney data - analysis with frailty

coxph(formula = Surv(time, status) ~ age + sex + disease + frailty(id),
data = kidney)

n= 76, number of events= 58

coef se(coef) se2 Chisq DF p
age 0.003181 0.01115 0.01115 0.08 1 7.8e-01
sex -1.483138 0.35823 0.35823 17.14 1 3.5e-05
diseaseGN 0.087957 0.40637 0.40637 0.05 1 8.3e-01
diseaseAN 0.350794 0.39972 0.39972 0.77 1 3.8e-01
diseasePKD -1.431107 0.63111 0.63111 5.14 1 2.3e-02
frailty(id) 0.00 0 9.3e-01

exp(coef) exp(-coef) lower .95 upper .95
age 1.0032 0.9968 0.98151 1.0253
sex 0.2269 4.4068 0.11245 0.4579
diseaseGN 1.0919 0.9158 0.49238 2.4216
diseaseAN 1.4202 0.7041 0.64880 3.1088
diseasePKD 0.2390 4.1833 0.06939 0.8235

Variance of random effect= 5e-07 I-likelihood = -179.1
Degrees of freedom for terms= 1 1 3 0
Concordance= 0.699 (se = 0.046 )
Likelihood ratio test= 17.65 on 5 df, p=0.003423
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Kidney data - analysis with frailty but without disease

coxph(formula = Surv(time, status) ~ age + sex + frailty(id),
data = kidney)

n= 76, number of events= 58

coef se(coef) se2 Chisq DF p
age 0.005253 0.01189 0.008795 0.20 1.00 0.66000
sex -1.587489 0.46055 0.351996 11.88 1.00 0.00057
frailty(id) 23.13 13.01 0.04000

exp(coef) exp(-coef) lower .95 upper .95
age 1.0053 0.9948 0.9821 1.0290
sex 0.2044 4.8914 0.0829 0.5042

Iterations: 7 outer, 65 Newton-Raphson
Variance of random effect= 0.4121647 I-likelihood = -181.6

Degrees of freedom for terms= 0.5 0.6 13.0
Concordance= 0.814 (se = 0.046 )
Likelihood ratio test= 46.76 on 14.14 df, p=2.312e-05
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Why are above analyses different?

> fit<-(coxph(Surv(time,status)~age+sex+disease,data=kidney))
> cox.zph(fit)

rho chisq p
age 0.03945 0.09544 0.757
sex 0.18642 2.56162 0.109
diseaseGN -0.02908 0.05037 0.822
diseaseAN 0.02794 0.04168 0.838
diseasePKD -0.00472 0.00187 0.965
GLOBAL NA 4.33109 0.503

> fit<-(coxph(Surv(time,status)~age+sex,data=kidney))
> cox.zph(fit)

rho chisq p
age 0.0878 0.524 0.468996
sex 0.4363 11.470 0.000707
GLOBAL NA 11.564 0.003083

Stare (SLO) Event History/Survival Analysis 173 / 185



Competing risks

Up to now we have assumed an individual can only experience one
event. Suppose we are interested in several different kinds of events, a
patient might die from different causes, the end of an unemployment
spell might mean getting a job or exiting the labour market.

Alive
1Death from0
cardiovascular

causes

other

-

2Death from

causes

S
S
S
S
SSw

λ1(t)

λ2(t)

Slika: An example of the competing risks model with two final events.
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Competing risks

When studying such data, we are interested in the cause-specific
hazard function

λj(t) = lim
∆t→0+

P(t ≤ T < t + ∆t ,J = j |T ≥ t)
∆t

,

where J = j indicates a failure from cause j . Assuming that only one of
the m failures types of interest can occur simultaneously, then

λ(t) =
m∑

j=1

λj(t).

Therefore, the overall survival function can be written as

S(t) = e
−

∫ t
0

m∑
j=1

λj (u)du
.
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Competing risks

The density function for time of failure j equals

fj(t) = lim
∆t→0+

P(t ≤ T < t + ∆t ,J = j)
∆t

,

and the corresponding cumulative distribution function (called the
cumulative incidence function) is

Fj(t) = P(T ≤ t ,J = j)

Note that the function Sj(t) would have no sensible interpretation and
that the correspondence between the above functions is a bit different
than in the case of only one possible event.
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Competing risks

Following the same idea as in (1) we have

λj(t) =
fj(t)

S(t−)
,

and the cumulative distribution function Fj can be calculated as

Fj(t) =

t∫
0

S(u−)λj(u)du, (15)

but since the rightmost part of (1) no longer holds, the quantity
exp(−

∫ t
0 λj(u)du) has no sensible interpretation.
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Competing risks

To estimate the effect of covariates in the competing risks setting, one
can again use the Cox model and specify the hazard functions as

λj(t ,x) = λ0j(t)eβj x . (16)

Denoting by tj1, . . . ,tjnj the ordered, distinct times of failures of type j ,
the corresponding partial likelihood is

L(β) =
m∏

j=1

nj∏
i=1

eβ
′
j xi∑

k∈R(tji ) eβ
′
j xk

If we allow different βj coefficients for each of the failure types, each
part of the above product can be estimated separately. To estimate the
coefficients in (16), one can therefore use the usual Cox model routine
and censor all events but the event of interest.
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Competing risks

Note that the estimated coefficients have to be interpreted in terms of
the hazard function and can not be directly translated into probabilities
(cumulative incidence functions) as (15) includes S(t) that depends on
hazards for the other failures as well.
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Multi-state models

In the previous section we dealt with several different types of events,
with the common property that all of them brought an individual to a
final state. One can also consider states that are transitional, i.e. states
from which the individual can exit, an example is given in Figure 180.

Alive
10

Illness

Dead

-

2

S
S
S
S
SSw

�
�
�
�
��/

λ01(t)

λ02(t) λ12(t ,d)
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Multi-state models

In such models, we follow the stochastic process X in time: in the
example given in Figure 180, X (t) = 0 indicates that an individual is
alive at time t , X (t) = 1 indicates he is ill and X (t) = 2 indicates he is
dead at time t . The quantities of interest are for example the state
occupation probability

Pj(t) = P(individual is in state j at time t) = P(X (t) = j)

and the state transition probability

Phj(s,t) = P(X (t) = j |X (s) = h),

where s and t denote two consequent time points and h and j two
possible states of the model.
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Multi-state models

The methods of estimating the above quantities are rather complicated
and still represent a very active area of research, we will therefore
comment only on the estimation of the hazard functions. These can be
(as in the competing risks model) estimated using the standard
methods (e.g. Cox model) by censoring all the events but the one we
are interested in. The data set has to be split into the time-dependent
form, with one line for each transition (start time, stop time, exiting
state and entering state).
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Multi-state models

For example, to estimate λ01(t) in Figure 180, one should focus on the
data exiting state 0 and censor all the individuals that do not enter
state 1.
As in the case of the competing risks, the coefficients estimated in this
way must be interpreted in terms of the hazard function.

T = s1 + d

D = d
-

T − D = s1X1
0 1 2

T = s2 + d

-X2
T − D = s2 D = d

0 1 2
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Multi-state models

When estimating the hazard function from a transient state, some care
must be given to the time scale. In Figure 180 we can for example deal
with time since origin (T ) or the duration time in state 1 (D).
To estimate λ12(d) we focus on all individuals that were at some point
in state 1, two examples of individual time-lines are given in Figure
183. Both individuals have the same duration time, but it is often
sensible to include the time from origin to state 1 as a covariate in the
model, for example:

λ12(d ,t ,x) = λ012(d)eβx+γ(t−d).
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Multi-state models

On the other hand, if we are interested in the time since origin T , the
two individuals in Figure 183 will never be directly compared in the
partial likelihood function. As an additional covariate, one should in this
case include time in state 1 (D) or, to make coding easier (no
time-dependent covariates), time from origin to state 1 (T − D):

λ12(t ,d ,x) = λ012(t)eβx+γ(t−d).
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