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Systems Biology and Biological Networks
Process Models and Inductive Process Modeling

Applications of [PM
® |n population ecology
® |n systems biology

Summary and Outlook




Systems Biology (SB)

New branch of the life sciences
® T[ries to understand organisms as a whole

Need to have an integrated picture of the processes
® That happen in the system at all levels
® And their dynamics

From the genome to the phenome
® |ntegrating high-throughput data from —omics

® genomics, transcriptomics, proteomics, metabolomics,
and phenomics




DNA -> Genome -> Genomics
~ 25,000 Genes
RNA =» Transcriptome =>» Transcriptomics

~ 100,000 Transcripts
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Metabolite % = Metabolome = Metabolomics
~ 3,000 Metabolites
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Phenotype

Phenotype = Phenome -> Phenomics




Biological Networks

A crucial distinction for SB is the study of

® connections/interactions among components of the
system, rather than just the individual components

9]

Thus, SB focuses on interaction networks

® Nodes are chemical compounds, metabolits, proteines,
receptors, kinases, genes, etc.

® Arcs are influences, interactions, processes

Types of biological networks in SB
® Metabolic networks
® Gene regulatory networks




Metabolic Networks
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Gene Regulatory Network
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Models of Bio Nets

Boolean networks: Discrete time, deterministic models
® Nodes are Boolean variables
® (Hyper-)Arcs are Boolean functions

Dynamic Bayesian networks: Discrete time, stochastic
® Nodes are Boolean variables
® (Hyper-)Arcs are probabilistic influences

Process models: Continuous time, deterministic
® Nodes are continuous variables

® (Hyper-)Arcs are modeled using equations: algebraic or ordinary
differential equations




Reconstructing Bio Nets

A task of central interest in system biology

® Formulating models of biological networks that capture
the dynamics of the studied systems

® From time series data about the measured concentrations
of compounds, metabolits, etc.

Need to determine structure and parameters
® Networks structure
® Functional form of the equations

® Values of the constant parameters in the equations (e.g.,
reaction rates constants)




Process Models
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Process Models (PM)

Integrate two aspects of equation-based models
® (Quantitative aspect: important for simulation
® (Qualitative aspect: important for explanation

Predator-prey interaction example
® [wo system variables: fox (predator) and hare (prey)

e (Quantitative aspect: two ordinary differential equations
that allows simulation

® (Qualitative aspect: three processes that explains the
structure of the model




PM: Quantitative Aspect

System of two differential equations
® (hare/dt=2.5x hare - 0.35 x hare x fox
® (fox/dt=0.03x hare x fox — 1.2 x fox

Models temporal change of the system variables
® dX/dt denotes first-order time derivative of X
® First-order time derivative = temporal change

Allows simulation of the model

® Given the initial values of the system variables
® See the next slide




PM: Simulation

—fox: simulation ~——hare: simulation
400 -

200 -

concentration




PM: Explanatory Aspect

What is the semantics of the equation terms?

The semantics reveals three processes
® (hare/dt= — 0.35 x hare x fox
® (fox/df=0.03x hare x fox— 1.2 % fox

The three processes correspond to

° of hare population

® | oss of fox population

® Predator-prey interaction between the two species




PM: Qualitative Aspect

entities

o

o

processes

predator-prey m




PM: Integration

loss predator-prey growth

d fox / dt = -1.2xfox d hare / dt = -0.35xharexfox d hare / dt = 2.5%hare
d fox / dt = 0.03xharexfox




Inductive
Process Modeling
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Inductive Process Modeling

The task of inductive process modeling
® |s the task of formulating a model
® That explains observed time series data

Given
® Measured behavior of an observed system
® And library of modeling knowledge

Find process model

® Composed of the given generic processes
® That fit the measured behavior of the system




IPM Task Example: Given...

fox: measurements ® hare: measurements
400 -

200 - ® ®

concentration




... FInd a Process Model...

loss predator-prey growth

d fox / dt = -1.2xfox d hare / dt = -0.35xharexfox d hare / dt = 2.5%hare
d fox / dt = 0.03xharexfox




... Such That

o fox: measurements - fox: simulation @ hare: measurements ===hare: simulation

400 -

200 -

concentration




Modeling

Knowledge: Generic

Processes

generic process
process template

Unlitimed_growth
d P/ dt = growth_rate(0:Inf) x P

process

growth
d hare / dt = 2.5xhare




Hierarchy of Generic Processes
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IPM: Generate Models
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IPM: Evaluate Each Model
PP / unlimited predation @

dfox/ct=.. ulation @ hare: measurements =—hare: simulation
d hare /dt= ...

200 - o ~

concentration




IPM: Generate Models (2)
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etc.




Process Models of
Population Dynamics




Modeling Food Chains in Aquatic
Ecosystems

Modeling library

® TJens of generic processes related to growth, loss, food
limitations of growth, temperature/light influence on
growth, mineralization, etc.

® Variety of different generic entities corresponding to
primary producers, animals, inorganic nutrients, etc.

Variety of data sets modeled
® Ross Sea, Antarctica

® Bled Lake, Slovenia

® Greifensee Lake, Switzerland
® ctc.




Ross Sea, Antarctica

RMSE = 2.5429, r2 = 0.9894

observed ———
predicted

: RMSE = 1.6910, r2 = 0.9759
300 350 400 450

time 30 |- observed ————
predicted




Greifensee Lake, Switzerland
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Bled Lake, Slovenia
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Process Models of
Biological Networks




Metabolic Networks and PMs

Entities = chemical compounds

Processes = chemical reactions

Entities can have different roles in reactions

® Substrates are input compounds

® Products are output constraints

® Modulates are enzymes that activate/inhibit the reaction




Modeling Know\edge
= =

Outflow

Not
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Simple Example Network

Irreversible Reversible

Not modulated Not modulated

Reversible
Not modulated




Generic Processes: |rreversible

generic process lrreversible_not_modulated
® variables S{compound}, P{compound}
® constants reaction_rate(0, Inf)
® cquations
dS /dt = -1 x reaction_rate x S
dP/ st = reaction_rate x S

generic process lrreversible_activated

® variables S{compound}, P{compound}, M{compound}
® constants reaction_rate(0, Inf), modulation_rate(0, Inf)
® ecquations

dS/dt=-1x reaction_rate x S x S/ (S + modulation_rate)
dP / st = reaction_rate x S x S /(S + modulation_rate)




Example Application: Glycosis

Inducing (partial) chemical network of glycosis

e Data: temporal responses of species to pulse changes (14
time points)
® From: Torralba et al. (2003) PNAS 100(4): 1494-1498

Responses of six chemical compounds:
G6P (glucose 6-phosphate)

FoP (fructose 6-phosphate)

F1,6BP (fructose 1,6-bisphosphate)
G3P (glycerol 3-phosphate)

3PG (3-phosphoglycerate)

DHAP (dihydroxyacetone 3-phosphate)




Induced Glycosis Network




Glycolisys Model Simulation
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Summary and Outlook
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Summary

We have developed a variety of approaches to equation
discovery, culminating in IPM ones

® | earn both parameters and structure of ODE models

® |ntegrate data-driven and knowledge-driven approaches to
modeling through |IPM

We have applied these to many applications in the
domain of population biology/ecology

® |nitial applications to problems in systems biology
® But much work remains to be done




PM Advantages

Three important properties of process models

® data integration (generality): integrating large data sets in
a single entity

® prediction: predicting future system behavior

® explanation: revealing the processes that govern the
system behavior

In comparison with other modeling approaches
e QOther focus on generality and prediction accuracy
® |PM takes care about explanatory power of models




The Promise of IPM for SB:
Support for Scenarios Like

Scientific task: Construct model of a system, for which some
measurements are available

1. First, find a model from the existing literature that has
been constructed for a similar system

2. Apply this model to the dataset at hand

Revise the model by using the data or construct

3. Say the fit of the model to the data is bad
o
® |[nduce new model by using data and domain knowledge

Currently support for individual steps, not process




Challenges/To Do List

Inducing/Learning models of large networks

Learning from little data
® Short time courses
® Parameter fitting therefrom

Learning models with unobserved variables

Developing libraries of modeling knowledge for
biological networks

Full support for scenarios as above




New Project: PHAGOSYS

Systems biology of phagosome formation and maturation:
modulation by intracellular pathogens

Coordinator: Imperial College London

Partners:

® | eiden University Medical Centre
Netherlands Cancer Institute, Amsterdam
MPI Infection Biology, Berlin

MPI Cell Biology and Genetics, Dresden
Jozef Stefan Institute, Ljubljana

Study Mycobacteria and Salmonella

Construct models (also PBMs) of phagocytosis
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