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Introduction

A large class of clustering problems can be formulated as an optimizational
problem in which the best clustering i1s searched among all feasible
clusterings according to a selected criterion function.

This clustering approach can be applied to a variety of very interesting
clustering problems, as it is possible to adapt it to a concrete clustering
problem by an appropriate specification of the criterion function and/or by
the definition of the set of feasible clusterings.

Both, the blockmodeling problem (clustering of the relational data) and the
clustering with relational constraint problem (clustering of the attribute and
relational data) can be very successfully treated by this approach.
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Cluster Analysis

Grouping units into clusters so that those within a cluster are as similar
to each other as possible, while units in different clusters as dissimilar as
possible, 1s a very old problem.

Although the clustering problem is intuitively simple and understandable,

providing solution(s) remains a very exciting activity.
The field of cluster analysis

e has its society, the International Federation of Classification Societies,

formed 1in 1985 from several national classification societies;
e organizes every second year its conference;

e publishes two journals: the Journal of Classification (from 1984) and

the journal Advances in Data Analysis and Classification (from 2007).
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Clustering Problem

Cluster analysis (known also as classification and taxonomy) deals mainly
with the following general problem: given a set of units, U, determine
subsets, called clusters, C', which are homogeneous and/or well separated

according to the measured variables. The set of clusters forms a clustering.
This problem can be formulated as an optimization problem:

Determine the clustering C* for which

P(C*) = énel% P(C)

where C is a clustering of a given set of units, I/, ® is the set of all feasible

clusterings and P : ® — R 1s a criterion function.

N /
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/ Clustering \

There are several types of clusterings, e.g., partition, hierarchy, pyramid,

fuzzy clustering, clustering with overlaping clusters. The most frequently
used clusterings are partitions and hierarchies.

A clustering C = {C1, s, ...Cy } is a partition of the set of units U if
Jci=u
i £j=C,NC; =0

A clustering H = {C4, C5, ...Cy } is a hierarchy if for each pair of clusters
C; and C; from H it holds

C; N Cj < {Cz, Cj, @}

and it is a complete hierarchy if for each unit z it holds {z} € H, and

kUEH. /
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Clustering Criterion Function

Clustering criterion functions can be constructed indirectly, e.g., as a
function of a suitable (dis)similarity measure between pairs of units (e.g.,

euclidean distance) or directly.

For partitions into k clusters, the Ward criterion function

P(C)= ) > d(ztc)

CeCzxel
is usually used, where t¢ 1s the center of the cluster C' and is defined as
tc = (Uic, U2C)s -+ UmC)

where ;¢ 1s the average of the variable U;, ©» = 1, ...m, for the units from
the cluster C. d is the squared euclidean distance.

N /
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As the set of feasible clusterings is finite a solution of the clustering problem
always exists. Since this set is usually very large it 1s not easy to find an
optimal solution.

In general, most of the clustering problems are NP-hard. For this rea-
son, different efficient /euristic algorithms are used. Among these, the
agglomerative (hierarchical) and the relocation approach are most often
used.

N /
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Agglomerative Approach

The agglomerative clustering approach usually assumes that all relevant
information on the relationships between the n units from the set U/ 1s
summarized by a symmetric pairwise dissimilarity matrix D = |d;;].

Each unit is a cluster: C; = {x;}, x; €U, i =1,2,...,n;
repeat while there exist at least two clusters:
determine the nearest pair of clusters C), and C:
d(C,,Cy) = min, , d(Cy, Cy) ;
fuse the clusters C), and C,, to form a new cluster C,. = C), U C;
replace C), and C,, by the cluster C;
determine the dissimilarities between the cluster C,. and other clusters.

The result 1s a hierarchy that 1s usually presented by a clustering tree — a

dendrogram.

N /
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Relocation Approach

This approach assumes that the user can specify the number of clusters in
the partition.

Determine the initial clustering C;
while
there exists C’ such that P(C’) < P(C), where C’ is obtained
by moving a unit z; from cluster C,, to cluster C,
or by interchanging units x; and x; between two clusters
in the clustering C;
repeat:
substitute C’ for C .

N /
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Benefits from the Optimizational Approach

The optimizational approch to clustering problem offers two possibilities
to adapt to a concrete clustering problem: the definition of the criterion
function P and the specification of the ser of feasible clusterings .

Blockmodeling 1s searching for a clustering according to the relational data
only and the solution can be obtained by an appropriatelly defined criterion

function.

For clustering with relational constraint an appropriately defined set of

feasible clusterings 1s used.

N /
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Blockmodeling

The goal of blockmodeling is to reduce
a large, potentially incoherent network
to a smaller comprehensible structure
that can be interpreted more readily.
Blockmodeling, as an empirical proce-
dure, 1s based on the idea that units in
a network can be grouped according to
the extent to which they are equivalent,
according to some meaningful defini-

tion of equivalence.

N
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Cluster, Clustering, Blocks

One of the main procedural goals of blockmodeling is to identify, in a given
network N = (U, R), R C U X U, clusters (classes) of units that share
structural characteristics defined in terms of /2. The units within a cluster
have the same or similar connection patterns to other units. They form a
clustering C = {C1,Cy, ..., Cy} which is a partition of the set U. Each
partition determines an equivalence relation (and vice versa). Let us denote
by ~ the relation determined by partition C.

A clustering C partitions also the relation R into blocks
R(CZ, Cj> = RN Cz X Cj

Each such block consists of units belonging to clusters C; and C'; and all
arcs leading from cluster C; to cluster C;. If ¢ = j, a block R(C};, C}) is

/

4P HOP # « X

called a diagonal block.
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Equivalences

Regardless of the definition of equivalence used, there are two basic

approaches to the equivalence of units in a given network (compare Faust,
1988):

e the equivalent units have the same connection pattern to the same
neighbors;

e the equivalent units have the same or similar connection pattern to
(possibly) different neighbors.

The first type of equivalence is formalized by the notion of structural
equivalence and the second by the notion of regular equivalence with the
latter a generalization of the former.

N /
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Structural Equivalence

Units are equivalent if they are connected to the rest of the network in
identical ways (Lorrain and White, 1971). Such units are said to be

structurally equivalent.

In other words, X and Y are structurally equivalent iff:

sl. XRY < YRX 3. VZeU\{X,Y}: (XRZ< YRZ)
2. XRX< YRY  s4. VZeU\{X,Y}:(ZRX < ZRY)

N

14
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... Structural Equivalence

on diagonal in diagonal blocks.

00000 100
00000 010
00000 001
00000 000
11111 011
11111 101
11111 110
11111 111

The blocks for structural equivalence are null or complete with variations

_— OO

O bl el

~
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Regular Equivalence

Integral to all attempts to generalize structural equivalence is the idea that
units are equivalent if they link in equivalent ways to other units that are
also equivalent.

White and Reitz (1983): The equivalence relation ~ on U 1s a regular
equivalence on network N = (U, R) if and only if for all X,Y,Z € U,
X ~ Y implies both

Rl. XRZ=3IWelU:(YRWAW = Z)
R2. ZRX=3IWelU: (WRY AW ~ Z)

N
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... Regular Equivalence

Theorem 1 (Batagelj, Doreian, Ferligoj, 1992) Ler C = {C;} be a

partition corresponding to a regular equivalence ~ on the network N =
(U, R). Then each block R(C,,C,) is either null or it has the property
that there is at least one 1 in each of its rows and in each of its columns.
Conversely, if for a given clustering C, each block has this property then

the corresponding equivalence relation is a regular equivalence.

The blocks for regular equivalence are null or 1-covered blocks.

00000 10100
00000 00101
00000 01000
00000 10110
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Establishing Blockmodels

The problem of establishing a partition of units in a network in terms of a
selected type of equivalence 1s a special case of clustering problem that can
be formulated as an optimization problem (®, P) as follows:

Determine the clustering C* € ® for which

P(C*) = glel% P(C)

where @ is the set of feasible clusterings and P 1s a criterion function.

N /
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/

N

pairs of units, or

according to the considered types of connections (equivalence).

Criterion Function

Criterion functions can be constructed

e indirectly as a function of a compatible (dis)similarity measure between

e directly as a function measuring the fir of a clustering to an ideal
one with perfect relations within each cluster and between clusters

/
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Indirect Approach

\ original relation

Q path matrix
triads

/ orbits
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A 4
hierarchical algorithms,

relocation algorithm, leader algorithm, etc.
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/ Dissimilarities \

The dissimilarity measure d is compatible with a considered equivalence ~

if for each pair of units holds

X; ~ Xj = d(XZ,XJ> =0

Not all dissimilarity measures typically used are compatible with structural

equivalence. For example, the corrected Euclidean-like dissimilarity

A Xi, Xj) = | (rie —7155)2 + (rig = 156)2 + D ((Tis — 755)% + (i — 755)?)
s=1
\ SF1,j

1s compatible with structural equivalence.

The indirect clustering approach does not seem suitable for establishing
clusterings in terms of regular equivalence since there is no evident way
khow to construct a compatible (dis)similarity measure. /
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Example: Support Network among Informatics Students

The analyzed network consists of social support exchange relation among
fifteen students of the Social Science Informatics fourth year class
(2002/2003) at the Faculty of Social Sciences, University of Ljubljana.
Interviews were conducted in October 2002.

Support relation among students was identified by the following question:

Introduction: You have done several exams since you are in the
second class now. Students usually borrow studying material from

their colleagues.

Enumerate (list) the names of your colleagues that you have most
often borrowed studying material from. (The number of listed

persons 1s not limited.)

N /
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b02

b51

g07

Class Network - Graph

gl2

g63

b96

b85

g09
g42

g22 g24
g28 /

gl0

b03

b89

class.net

Vertices represent students
in the class; circles — girls,
squares — boys. Recipro-
cated arcs are represented by
edges.
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Class Network — Matrix
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b51 E—

b89 —
b02 —_—

b96 —_—

b03 —

b85

910 _

Indirect Approach \

Using Corrected Euclidean-like
dissimilarity and Ward clustering
method we obtain the following
dendrogram.

g24 —_—

g09 —

963 —

From 1t we can determine the num-

ber of clusters: ‘Natural’ cluster-

ings correspond to clear ‘jumps’ in

gl12 _

g07 —

928 _

922 _—

the dendrogram.

If we select 3 clusters we get the

g42 —_—

partition C.

{{b51, b89, b02, b96, b03, b85, g10, g24},
{909, 963, g12},{¢07, 928, 922, g42} } /
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b02

b51

g07

~

Partition into Three Clusters (Indirect Approach)

b96

b85

On the picture, ver-

N tices in the same
922 / 924 cluster are of the
928 same color.
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senting the network. Clus-
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Direct Approach

The second possibility for solving the blockmodeling problem is to construct
an appropriate criterion function directly and then use a local optimization
algorithm to obtain a ‘good’ clustering solution.

Criterion function P(C) has to be sensitive to considered equivalence:

P(C) = 0 < C defines considered equivalence.

28
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/ Criterion Function \

One of the possible ways of constructing a criterion function that directly

reflects the considered equivalence is to measure the fit of a clustering to
an ideal one with perfect relations within each cluster and between clusters
according to the considered equivalence.

Given a clustering C = {C1,Cs, ..., C}, let B(C,, C,) denote the set of
all ideal blocks corresponding to block R(C,,, C,). Then the global error of

clustering C can be expressed as

P(C)= > min  d(R(C,,C,), B)
. .CoeC BeB(C,,Cy)

where the term d(R(C,,, C,), B) measures the difference (error) between
the block R(C,,,C,,) and the ideal block B. d is constructed on the basis of
characterizations of types of blocks. The function d has to be compatible

Qith the selected type of equivalence. /
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Local Optimization

For solving the blockmodeling problem we use the relocation algorithm:

Determine the initial clustering C;

repeat:
if in the neighborhood of the current clustering C
there exists a clustering C’ such that P(C’) < P(C)
then move to clustering C’ .

The neighborhood in this local optimization procedure is determined by the
following two transformations:

e moving a unit X, from cluster C), to cluster C; (transition);

e interchanging units X,, and X, from different clusters C), and C,

(transposition).

N /
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Partition into Three Clusters: Direct Solution (Unique)

b96

b85

b02 \

g42

This is the same par-
/ tition and has the
622 \ / g24 number of inconsis-

g07

928 tencies.

gl0
/ b03

b51

N

b89
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Generalized Blockmodeling
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Pre-specified Blockmodeling

In the previous slides the inductive approaches for establishing blockmodels
for a set of social relations defined over a set of units were discussed.
Some form of equivalence 1s specified and clusterings are sought that are
consistent with a specified equivalence.

Another view of blockmodeling is deductive in the sense of starting with a
blockmodel that is specified in terms of substance prior to an analysis.

In this case given a network, set of types of ideal blocks, and a reduced
model, a solution (a clustering) can be determined which minimizes the
criterion function.

N /
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The basic types of models are:

Pre-Specified Blockmodels

The pre-specified blockmodeling starts with a blockmodel specified, in
terms of substance, prior to an analysis. Given a network, a set of ideal
blocks 1s selected, a family of reduced models 1s formulated, and partitions

are established by minimizing the criterion function.

~

S I % | 0 100
1010 * | ok 0l *|0
1010 T 00| *

center - hierarchy clustering
periphery
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Prespecified Blockmodeling Example

We expect that center-periphery model exists in the network: some students
having good studying material, some not.

Prespecified blockmodel: (com/complete, reg/regular, -/null block)
1 2

I | [comreg] -

2 | [comreg] -

Using local optimization we get the partition:

C = {{b02,b03,b51,b85,b89,1b96, g09},
{907, 910, g12, 922, g24, 928, g42, g63} }

N /
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Model
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Blockmodeling of Multi-Way Network

It 1s also possible to formulate a generalized blockmodeling problem where
the network 1s defined by several sets of units and ties between them.
Therefore, several partitions — for each set of units a partition has to be
determined. The generalized blockmodeling approach was adapted for 2-
way networks, and only for structural equivalence and the indirect approach
for 3-way networks.

Blockmodeling of Valued Networks

Till now we were treating only binary networks. Another interesting
problem 1s the development of generalized blockmodeling of valued
networks. Ziberna (2007) proposed several approaches to generalized
blockmodeling of valued networks, where values of the ties are assumed to

be measured on at least interval scale.

N /
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To group given territorial
units into regions such that
units inside the region will
be similar according to se-
lected variables (attributes)
and form contiguous part of
the territory was the moti-
vation to develop clustering
with relational constraints ap-
proach (Ferligoj and Batagelj,
1982 and 1983).
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/ ... Clustering with Relational Constraint \

In the case of clustering with the relational constraint, the problem is to
find clusterings as similar as possible according to attribute data and also
considering the ties from a relation R. The constrained clustering problem
can be expressed as clustering problem where the constraints are considered
in the definition of the feasible clusterings.

The clustering with constraints problem seeks to determine the clustering
C* for which the criterion function P has the minimal value among
all clusterings from the set of feasible clusterings C € ®, where ® is

determined by the constraints.

Set of feasible clusterings for relational type of constraint can be defined as:

¢(R) ={C : C s a partition of I/ and each cluster C' € C
is a subgraph (C', RN C x C) in the graph (U, R)
k with the required type of connectedness }

/
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... Clustering with Relational Constraints

We can define different types of sets of feasible clusterings for the same

relation R. Some examples of types of relational constraint ®*(R) are

~

type of clusterings

type of connectedness

¢'(R)
¢*(R)
(R)
(R)
(R)

3

>
N

5

S)

weakly connected units
weakly connected units that contain at most one center
strongly connected units

clique

the existence of a trail containing all the units of the cluster

Trail — all arcs are distinct.

A set of units L C C'is a center of cluster C in the clustering of type #*(R)
iff the subgraph induced by L is strongly connected and R(L)N(C'\ L) = (.
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Some Graphs of Different Types
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with a center {1, 2,4}
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Solving Clustering with Relational Constraints Problem

The agglomerative hierarchical and the relocation approach can be

adapted for solving relational constrained clustering problems (Ferligoj
and Batagelj, 1982 and 1983).

Clustering with Relational Constraints for Large Data

Recently Batagelj, Ferligoj and Mrvar (2007, 2008) adapted the clustering
with relational constraint approach for very large networks. It 1s available
in program Pajek .

N /
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Example: US Counties

US Census 2000: V1 — Area, V2 — Population, V47 — Percent of White, V125 — Educational attainment 1990, V126 — Household income; standardized
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Software

Most of described clustering procedures are implemented in Pajek —
program for analysis and visualization of large networks (Batagelj and
Mrvar, 1998). It 1s freely available, for noncommercial use, at:

http://pajek.imfm.si
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Conclusion

The optimizational approach to the clustering problem can be applied

to a variety of very interesting clustering problems, as it alows possible
adaptations of a concrete clustering problem by an appropriate specification
of the criterion function and by the definition of the set of feasible
clusterings. Both the blockmodeling problem and the clustering with
relational constraint problem are such cases.

There are several possible further developments in blockmodeling, e.g.,
efficient direct approach for 3-way blockmodeling, blockmodeling for large
networks, and dynamic blockmodels.

N /
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