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Relative survival:
Understanding the concepts 

and using the methods

Slovenia, October 2008
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Motivation

• Is breast cancer survival worse among young women? 

• Do women have  better prognosis than men in colorectal 
cancer? 

• Is it possible to say that a patient with colon cancer is cured, if 
he survived five years after the diagnosis? 

• The usual evaluation of survival is unable to answer these 
questions. The relative survival methodology will greatly help.
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I.Understanding the concepts

Net survival & Relative survival
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Net survival probability
A patient with cancer is submitted to the mortality hazard due to this specific 
disease added to that due to other pathologies, as observed in the 
population to which he belongs. In other words,
At time t after diagnosis, the hazard rate of a patient, diagnosed at age x, is 
the sum of the cancer hazard rate and of the hazard rate due to other 
causes

Therefore the net cancer survival probability is obtained from the crude 
survival probability divided by the probability of surviving from other 
causes between age x and x+t. 
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λc(x)

λa(x)
λa

νc(y-x)

νa(y-x)

Mortality:
μa= λa ⊗νa

μc= λc ⊗νc

Lethality:
νc (t)= νo(t)− μa(y)

A simple(?) diagram

νo(y-x)

μa(y)

λc

x:age at diagnosis    y:age at death  t=y-x: time since diagnosis
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Estimation of the net survival
• If incidence and mortality for a given cancer are known in a 

given population, the associated survival might be computed 
(at least in principle). This is the net survival for this given 
population.

• The net survival may be estimated from survival data  of a 
given cohort, if the cause of death of  each deceased subject 
is known:
– An observation is censored at the time of death 

if the death is not caused by the cancer under 
study.

• This latter estimation may be biased due to the subjective 
determination of the cause of death
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Relative survival

• If we considered that the mortality from other causes is 
known and taken equal to the life table mortality, we shall 
estimate the excess cancer death rate:

• Or equivalently, as explained above, we shall estimate the 
relative survival

Where Se(t) is known as the expected survival

• The relative survival impute to cancer the deaths from 
causes that are indirectly attributable to the disease, its 
treatment or to its risk factors.
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Relative survival estimation ( I )
the “ratio estimate”

• Initially the estimation methods relied on the simple 
calculation of the expected survival from ad-hoc life table.

– The relative survival was then calculated by 
dividing the “actuarial” or the “KM” survival 
estimate by this expected survival

• The methods differed only in the way the expected survival 
was computed (Ederer et al, Hakulinen )
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Relative survival estimation ( II )
• The life table expected survival depends on a set of 

covariates z , - usually age, sex and year of diagnosis

Since z is usually a categorical variable

• Therefore, if the relative survival depends effectively on z, 
the relative survival of the cohort is a weighted average of 
the relative survival of the various z-categories, the weight 
being the number of expected survivors in the category 

• …………
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Relative survival estimation ( II… )
• …………….
• As a consequence the relative survival of the group is closer 

to the relative survival of the sub-group with the greater 
number of expected survivors
– Usually the younger, the women, and the most 

recently diagnosed subjects
– As time since diagnosis increases the “ratio 

estimate” may increase since more weight is 
given to greater relative survival  

• The ratio estimate will not provide a “bona fide” survival 
curve

• ……………………..
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Relative survival estimation ( II… )
• ………………
• The usual calculation of the relative survival of the group

is different from the “ratio estimate” of the relative survival of the 
group

• This leads to obvious problems of consistency, in particular for
standardization.

• Only when Sr does not depend on z is the ratio-estimate clearly 
defined. 
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Relative survival estimation ( III )
The excess death rate model

• The idea is to estimate the death rate in excess of the background 
mortality rate and to obtain the relative survival from it, instead of 
estimating the survival probability directly: 

Where νr(t,τ) is a parametric function to be estimated from survival data by the 
maximum likelihood method.

• A natural choice for νr is the step function:

where the follow-up time has been split in K intervals.
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Illustration I ( Estève et al)
Colon cancer in Geneva 70-79. Men&women 

Age No 5 years 10 years 5 years 10 years 5 years 10 years
<65 322 0.51

(0.03)
0.51
(0.04)

0.54
(0.03) 

0.50
(0.04)

0.57
(0.03)

0.55
(0.03)

65-74 292 0.35
(0.03)

0.30
(0.04)

0.37
(0.03)

0.30
(0.05)

0.38
(0.03)

0.31
(0.04)

75+ 326 0.24
(0.03)

0.19
(0.03)

0.32
(0.03)

0.30
(0.09)

0.25
(0.03)

0.21
(0.03)

Total 940 0.40
(0.02)

0.36
(0.03)

0.42
(0.02)

0.40
(0.03)

0.40
(0.02)

0.36
(0.02)

life table censoring
Maximum Likelihood Ederer Net survival

Causes of death were known and reviewed by a registry physician.
The swiss life table, 1978-83, were used for relative survival computation
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Colon cancer in Geneva 70-79. Men&women
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Illustration II
• The Survival data from female breast cancer incident cases in 

the Eindhoven region of Netherland, between 1984 and 1989

• The available variables are age, year of diagnosis, size of the 
tumour, number of positive node, number of node examined and 
also stage, last digit of ICD code, morphology.

• This dataset will serve to illustrate the remainder of the 
presentation
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Breast cancer data: death rate

Crude death rate
Excess death rate

Using a step function, with K=10 and one-year interval, for the excess rate 
and an exponential regression using the same interval for the crude rate.
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Breast cancer data: an other parametric model
Remontet et al

Time since diagnosis (years)
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Relative survival by Hakulinen method

Breast data age>70
Hakulinen
excess rate model
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Final notes on the excess death rate estimate

• If the excess death rate is 

The ML equations for τk are

If τk>0 , these equations are equivalent to:

• The two ways of obtaining the # expected deaths, occurring in interval k 
and caused by the specific disease, must give the same result
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Final notes on the excess death rate estimate

• The previous equation suggest the algorithm

• If we increase the number of interval in order to get only one 
death in each interval the above algorithm becomes:

where the denominator is the number still at risk 
at time ti

• This is the EM algorithm proposed by Maja Pohar when 
there is no covariate in the additive model
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II. Multivariate Regression

For relative survival data
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Multivariate Regression for the excess rate

• The extension of the excess death rate model to a 
multivariate model is straightforward: The function νr of 
slide 12 is now written:

• Where νb(t,τ) is a parametric function modelling the baseline 
rate (usually a step function, a regression spline, or a 
fractional polynomial as in Lambert et al)

• The full ML method is used for its estimation, since there is 
no simplification in using the partial likelihood

)exp()|(),|,( ztzt br βτνβτν =
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A model for grouped data (Hakulinen et al)

• Such a model was proposed by Hakulinen et al. in 1987 . 
Grouping data by follow-up interval permits a GLM to be 
implemented for parameter estimation

where s0k (sek) are  the crude (expected) survival in the interval k
• There is a closed relationship with the model based on 

individual data

• By definition grouped data can only deal with categorical 
explanatory variable
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Computation procedure

• As suggested initially by Dickman et al. The estimation of the 
parameter of the model with a step function as baseline is greatly 
facilitated by the splitting of the individual data at the boundaries 
of the interval Ik

• In the case of the step function, one can take advantage of the 
proportionality of the “survival likelihood” and of the “Poisson 
likelihood” to use a GLM algorithm with Poisson error.

• In the case of other parametric function, it makes the integration 
of the baseline rate easier, as shown by Remontet et al.

• Pohar et al. have implemented several of these approaches in an 
R-package freely available, where many more is available…
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Non-parametric approaches
• Sasieni (1992) developed a non-parametric approach based on the 

counting process dÑi(t)=dNi(t)-Yi(t)μi(x+t)dt
– He provided convergence proofs and examples, but 

to my knowledge no accessible software exist to 
illustrate this approach

• Pohar et al (2008) developed an approach based on the missing 
data EM approach. This seems to be based on the counting 
process dN*

i(t)=widNi(t) where wi =νri /(νri +μi ), the expectation of 
dNi(t) if only death from the specific disease are counted.
– The method is implemented in the relsurv R-package

• “Full” additive model has been used by Zahl and discussed 
recently by Cortese et al
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Which method ?
• We have still little experience on the comparison of the 

various methods but we can anticipate that they will give 
close results for the β estimates.

• The estimate of the baseline rate may be crucial in some 
context and more work is needed in that respect. 
– Is a posteriori smoothing better than a priori

modelling?
• All methods allows time dependant covariates and the 

checking and modelling of non proportionality 
• The context of the study is certainly important to decide 

which method to use, in particular for deciding between 
additive, multiplicative and other models (e.g.: models for 
individual measure of Stare et al)
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Ill-Illustration of the methods

With the breast cancer data
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Is breast cancer survival worse 
among young women? 
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Age effect on crude and relative survival,
age as a categorical variable
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Cox model
Excess rate model:

Step function
EM method 

Age effect on crude and relative survival, 
age as a quadratic spline function (one node at age 50)



31

How changes the age effect if we 
adjust for the size of the tumour and 
the number of positive node?
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Probability of a positive node

before adjustment

after adjusting for log2(size)
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Age effect after adjustment for size and node

Unadjusted
Adjusted
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Age effect by node status

Whole cohort            Node +                   Node – (not significant)

No adjustment Adjusted for size
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Is the age effect the same over the 
whole follow-up period?
In other word, is the proportional 
hazard model acceptable? is the 
relative rate β changing with time?
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Is the relative rate β changing with time?

• The approach is the same as that used for crude survival:
– Compute the Schoenfeld residuals and smooth the associated 

scatter plot: its graph suggest the functional form of β(t) (see
Stare et al)

– Fit a model with time-varying coefficients
• The latter approach (see Abramovitz and Giorgi) may be computer intensive if 

the coefficient is continuous in time
– The calculation of the cumulative rate in the likelihood implies

the evaluation of a complicated integral in a parametric model
– The interaction term Σ β j gj(t)z must be re-calculated at each 

failure time in a non-parametric model
• Evaluating the effect for a partition of the follow-up time may be sufficient 
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Schoenfeld residuals  for x2 and x2×(X>0)
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Whole follow-up
Up to 3 years
From 3 years

Changing age effect with follow-up time
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Conclusion
• It is clear from our discussion that the “ratio estimate” of relative 

survival is less “consistent” than the estimate obtained from the 
excess rate model. 

• With little more work the multivariate regression model for relative 
survival will have the same flexibility that the one reached for
crude survival (the Cox model tool kit).

• The cancer registries make, at present, little use of this flexibility 
either because little promotion of this methodology has been done 
or because of the lack of easy-to-use procedure in commercially 
available statistical software.

• The groups engaged in this field of research should make a 
common effort to correct for this anomaly
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