Goodness of fit

The relsurv package

Prileganje regresijskih modelov za relativno preživetje Goodness of fit of relative survival models

Maja Pohar Perme doktorsko delo

mentor prof. dr. Janez Stare

Ljubljana, marec 2007

Introduction	Transformation approach	Goodness of fit	The relsurv package
Objectives			

To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Introduct	inn
Introduct	1011

Goodness of fit

The relsurv package

Objectives

The goal of relative survival regression

To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Additive model

Multiplicative model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

I and the second	
Introc	luction
_	

Goodness of fit

The relsurv package

Objectives

The goal of relative survival regression

To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Additive model	
$\lambda_{O} = \lambda_{P} + \lambda_{E}$	

Multiplicative model	
$\lambda_{O} = \lambda_{P} * \nu$	J

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Introduction	Transformation approach	Goodness of fit	The relsurv package
Objectives			

To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Introduction	Transformation approach	Goodness of fit	The relsurv package
Objectives	S		

To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Introduction	Transformation approach	Goodness of fit	The relsurv package
Objectives	\$		

To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Objectives	Introduction	Transformation approach	Goodness of fit	The relsurv package
	Objectives	5		

To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Transformation approach

Goodness of fit

The relsurv package

Transformation approach published: Stare, Henderson, Pohar, JRSS C, 2005

Transformation approach

Goodness of fit

The relsurv package

Transformation approach published: Stare, Henderson, Pohar, JRSS C, 2005

Transformation approach

Goodness of fit

The relsurv package

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transformation approach published: Stare, Henderson, Pohar, JRSS C, 2005

Transformation approach

Goodness of fit

The relsurv package

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Transformation approach published: Stare, Henderson, Pohar, JRSS C, 2005

 $Y = F_P(T)$

Transformation approach

Goodness of fit

The relsurv package

Transformation approach published: Stare, Henderson, Pohar, JRSS C, 2005

$$Y = F_P(T)$$

Transformation approach

Goodness of fit

The relsurv package

Transformation approach published: Stare, Henderson, Pohar, JRSS C, 2005

$$Y = F_P(T)$$

Transformation approach

Goodness of fit

The relsurv package

Transformation approach published: Stare, Henderson, Pohar, JRSS C, 2005

Introduction o	Transformation approach	Goodness of fit	The relsurv package
Properties			

Properties

New outcome variable. Censoring status and covariate values remain unchanged

Surviv

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Any survival analysis method can be used

•
$$T \sim F_P \Rightarrow Y \sim U[0,1]$$

• Patients can live better than the population

Introduction o	Transformation approach	Goodness of fit	The relsurv package
Properties			

Properties

- New outcome variable. Censoring status and covariate values remain unchanged
- Any survival analysis method can be used

•
$$T \sim F_P \Rightarrow Y \sim U[0,1]$$

• Patients can live better than the population

Cox model $\lambda(y) = \lambda_0(y)e^{bx}$

- natural choice new time ordering
- the covariates not included in the population tables keep the same coefficient

Transformation approach

Goodness of fit

The relsurv package

Comparison of the models - interpretation

hazard

Goodness of fit

The relsurv package

Comparison of the models - interpretation

Goodness of fit

The relsurv package

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Comparison of the models - interpretation

does excess hazard differ?

Goodness of fit

The relsurv package

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Comparison of the models - interpretation

does excess hazard differ?

Goodness of fit

The relsurv package

Comparison of the models - interpretation

does excess hazard differ?

does the observed hazard ratio differ from the population hazard ratio?

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Goodness of fit

The relsurv package

Comparison of the models - interpretation

does excess hazard differ?

does the observed hazard ratio differ from the population hazard ratio?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

Goodness of fit

The relsurv package

Comparison of the models - interpretation

does excess hazard differ?

does the observed hazard ratio differ from the population hazard ratio?

Goodness of fit

The relsurv package

Comparison of the models - interpretation

does excess hazard differ?

does the observed hazard ratio differ from the population hazard ratio?

Goodness of fit

The relsurv package

Comparison of the models - interpretation

Goodness of fit

The relsurv package

Comparison of the models - interpretation

Goodness of fit

The relsurv package

Comparison of the models - interpretation

Goodness of fit

The relsurv package

Comparison of the models - interpretation

Goodness of fit

The relsurv package

Comparison of the models - interpretation

・ロト < 団ト < 団ト < 団ト < 団ト < ロト

Goodness of fit

The relsurv package

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Comparison of the models

The coefficient values (for the covariates used in the population tables) estimated in different models are different and require a different interpretation

- $T \sim F_P \Rightarrow$ results of all models are equal
- $\nu_0 = const. \Rightarrow Cox in Y=multiplicative$
- general case ⇒ all models different, but multiplicative and Cox in Y usually closer. The proportional hazards assumption is not met simultaneously.

Goodness of fit

The relsurv package

Transformation approach

- Avoids the assumption about the relationship between the observed and population hazard
- Provides new information about relative survival
- Only the outcome variable changes all methods from the classical survival analysis can be used
- Can be used when certain groups of patients live better than the population (additive model can not!)

Goodness of fit

The relsurv package

Checking the proportional hazards assumption published: Stare, Pohar, Henderson; SIM 2005

The Cox model

- The multiplicative model and the Cox model in transformed time can both be seen as special cases of the Cox model
- Schoenfeld residuals can be used for both graphical and formal evaluation of the PH assumption

The additive model

- No methods exist
- A new kind of residuals is introduced the partial residuals

Goodness of fit

The relsurv package

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_i = X_i - \hat{E}_i(X t_i)$	$X_i - \sum X_j rac{\lambda_j}{\sum \lambda_k}$	$X_i - \sum X_j rac{\lambda_{Pj} + \lambda_{Ej}}{\sum (\lambda_{Pk} + \lambda_{Ek})}$	

Goodness of fit

The relsurv package

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_i = X_i - \hat{E}_i(X t_i)$	$X_i - \sum X_j rac{\lambda_j}{\sum \lambda_k}$	$X_i - \sum X_j rac{\lambda_{Pj} + \lambda_{Ej}}{\sum (\lambda_{Pk} + \lambda_{Ek})}$	
Properties	∫ HdM	\checkmark	\checkmark	C

Goodness of fit

The relsurv package

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_i = X_i - \hat{E}_i(X t_i)$	$X_i - \sum X_j rac{\lambda_j}{\sum \lambda_k}$	$X_i - \sum X_j rac{\lambda_{Pj} + \lambda_{Ej}}{\sum (\lambda_{Pk} + \lambda_{Ek})}$	
Properties	∫ HdM	\checkmark	\checkmark	0
· · ·	score function	\checkmark	X	
The relsurv package

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_i = X_i - \hat{E}_i(X t_i)$	$X_i - \sum X_j rac{\lambda_j}{\sum \lambda_k}$	$X_i - \sum X_j rac{\lambda_{Pj} + \lambda_{Ej}}{\sum (\lambda_{Pk} + \lambda_{Ek})}$	•
Properties	∫ HdM	 ✓ 	\checkmark	
	score function	\checkmark	X	
Graphical inspection		\checkmark	\checkmark	

The relsurv package

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_i = X_i - \hat{E}_i(X t_i)$	$X_i - \sum X_j rac{\lambda_j}{\sum \lambda_k}$	$X_i - \sum X_j rac{\lambda_{Pj} + \lambda_{Ej}}{\sum (\lambda_{Pk} + \lambda_{Ek})}$	
Properties	∫ HdM	\checkmark	\checkmark	C
-	score function	\checkmark	X	
Graphical inspection		\checkmark	✓	•
Convergence to Brownian bridge	in eta^0	\checkmark	\checkmark	0

The relsurv package

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへぐ

Ideas to be modified for use in relative survival

	Cox	additive	
Definition $U_i = X_i - \hat{E}_i(X t_i)$ $X_i - \hat{E}_i(X t_i)$	$-\sum X_j rac{\lambda_j}{\sum \lambda_k}$	$X_i - \sum X_j rac{\lambda_{Pj} + \lambda_{Ej}}{\sum (\lambda_{Pk} + \lambda_{Ek})}$	•
Properties $\int H dM$	\checkmark	√	
score function	\checkmark	X	
Graphical inspection	\checkmark	\checkmark	0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\checkmark	√ X	0

The relsurv package

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_i = X_i - \hat{E}_i(X t_i)$	$X_i - \sum X_j rac{\lambda_j}{\sum \lambda_k}$	$X_i - \sum X_j rac{\lambda_{Pj} + \lambda_{Ej}}{\sum (\lambda_{Pk} + \lambda_{Ek})}$	•
Properties	∫ HdM	\checkmark	\checkmark	
·	score function	\checkmark	X	
Graphical inspection		\checkmark	\checkmark	•
Convergence	in β^0	\checkmark	\checkmark	C
to Brownian	in \hat{eta}	\checkmark	X	
bridge	# covariates> 1	X	X	

The quality of Brownian bridge approximation

In theory

- Asymptotic distribution exists
- Taylor series expansion: Brownian bridge + residual
- Residual size depends on: variance of the covariate in time

The quality of Brownian bridge approximation

In theory

- Asymptotic distribution exists
- Taylor series expansion: Brownian bridge + residual
- Residual size depends on: variance of the covariate in time

In practice

- The proportion of tests rejecting under the null hypothesis (α = 0.05): 0.03-0.05
- The test statistic can only be conservative
- Resampling approach (resample fom the distribution defined by the covariates and estimated coefficients)

Transformation approach

Goodness of fit

The relsurv package

Speed of convergence

- Comparable to the ideal case (i.i.d. variables)
- The maximum (weighted) BB statistic: 100 (conservative otherwise)
- The Cramér Von Mises statistic: 50
- Effective sample size depends on: censoring, baseline excess hazard

Introduction o	Transformation approach	Goodness of fit ○○○○●○	The relsurv package
Power			

Value of the statistics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

To sum up

- The partial residuals are useful in checking the PH assumption in the additive model
- Theoretical deficiencies are not important for practical use - the Brownian bridge theory can be used
- The choice of the test statistic should be based on the alternative hypothesis
- The Cramér Von Mises statistic more appropriate with small sample sizes

Transformation approach

Goodness of fit

The relsurv package ●○

relsurv package published: Pohar, Stare, CMPB 2006; CRAN

The package ensures easy use of relative survival methods

 provides a uniform syntax for all the models using any format of population tables

> rs.fun(Surv(time,cens) ~ variables,data,ratetable)
rsadd,rstrans,rsmul

- simplifies transformation of population tables into R transrate.hld, transrate.hmd, transrate, joinrate
- functions for checking goodness of fit rs.zph, rs.br
- provides methods for plotting results plot.rsurvfit, plot.rs.zph, plot.rs.br

relsurv package

- available at CRAN
- the most complete and flexible package for relative survival
- usable with any format of population tables
- thoroughly checked and compared to results in other software
- enriched by the options required by the users

- Stare J., Henderson R., Pohar M. An individual measure of relative survival Journal of Royal Statistical Society – C, 2005
- Stare J., Pohar M., Henderson R. Goodness of fit of relative survival models Statistics in Medicine, 2005
- Pohar M., Stare J. Relative survival analysis in R

Computer methods and programs in biomedicine, 2006

Cox model Schoenfeld residuals

$$J_i = X_i - \hat{E}(X, t_i)$$

= $X_i - \sum_{j \in R_i} X_j \frac{\lambda_j}{\sum_{k \in R_j} \lambda_k}$

additive model partial residuals

$$: = X_i - \hat{E}(X, t_i)$$
$$= X_i - \sum_{j \in R_i} X_j \frac{\lambda_{Pj} + \lambda_{Ej}}{\sum_{k \in R_i} (\lambda_{Pk} + \lambda_E)}$$

Notation

λ_E excess hazard

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

U

Properties

Residuals can be expressed as martingales

Properties

Residuals can be expressed as martingales

$$U(\beta^{0}, t) = \sum_{i=1}^{n} \int_{0}^{t} \left\{ \mathbf{X}_{i}(u) - \hat{E}(X|u, \beta^{0}) \right\} dN_{i}(u)$$
$$= \sum_{i=1}^{n} \int_{0}^{t} \left\{ \mathbf{X}_{i}(u) - \hat{E}(X|u, \beta^{0}) \right\} dM_{i}(u)$$
predictable martingale process

Therefore,

$$\begin{split} E\mathbf{U}(\beta^{0},t) &= \mathbf{0} \\ E\mathbf{U}_{\mathbf{i}}(\beta^{0},t) &= \mathbf{0} \\ \cos\left(\mathbf{U}_{\mathbf{i}}(\beta^{0},t),\mathbf{U}_{\mathbf{j}}(\beta^{0},t)\right) &= \mathbf{0} \end{split}$$

variance of the residual process can be computed

Properties

Residuals can be expressed as martingales

$$U(\beta^{0}, t) = \sum_{i=1}^{n} \int_{0}^{t} \left\{ \mathbf{X}_{i}(u) - \hat{E}(X|u, \beta^{0}) \right\} dN_{i}(u)$$
$$= \sum_{i=1}^{n} \int_{0}^{t} \left\{ \mathbf{X}_{i}(u) - \hat{E}(X|u, \beta^{0}) \right\} dM_{i}(u)$$
$$\underbrace{\mathsf{Predictable}}_{\text{process}} \qquad \text{martingale}$$

Therefore,

$$\begin{split} E\mathbf{U}(\boldsymbol{\beta}^{0},t) &= \mathbf{0} \\ E\mathbf{U}_{\mathbf{i}}(\boldsymbol{\beta}^{0},t) &= \mathbf{0} \\ \cos\left(\mathbf{U}_{\mathbf{i}}(\boldsymbol{\beta}^{0},t),\mathbf{U}_{\mathbf{j}}(\boldsymbol{\beta}^{0},t)\right) &= \mathbf{0} \end{split}$$

variance of the residual process can be computed

Schoenfeld residuals follow from the score function

$$U(\hat{\beta},\infty) = \sum_{i=1}^{n} U_i(\hat{\beta}) = 0$$

This is not true in the additive model case!

Graphical inspection

 $\beta^{0}(t_{i}) \simeq \hat{\beta} + \left(\frac{\partial}{\partial\beta} \{ \hat{E}(X|t_{i},\hat{\beta}) \} \right)^{-1} E[U(\hat{\beta},t)]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Brownian motion constructed as the sum of residuals

Tests based on Brownian bridge properties

β^0 in time	brownian bridge process	test statistic
		T_1 max(abs(BB(t))
_		T ₂ max using weighted residuals
		T_3 Cramer-Von Mises $\int_0^1 BB^2(t)dt - (\int_0^1 BB(t)dt)^2$