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The goal of relative survival regression

To estimate the effect of covariates on mortality caused by a disease
even though the cause of death is unknown.
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Transformation approach
published: Stare, Henderson, Pohar, JRSS C, 2005
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Properties

Properties
New outcome variable. Censoring status and covariate
values remain unchanged
Any survival analysis method can be used
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Comparison of the models

The coefficient values (for the covariates used in the
population tables) estimated in different models are
different and require a different interpretation

T ∼ FP ⇒ results of all models are equal
ν0 = const . ⇒ Cox in Y=multiplicative
general case ⇒ all models different, but multiplicative
and Cox in Y usually closer. The proportional hazards
assumption is not met simultaneously.
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Transformation approach

Avoids the assumption about the relationship between
the observed and population hazard
Provides new information about relative survival
Only the outcome variable changes - all methods from
the classical survival analysis can be used
Can be used when certain groups of patients live
better than the population (additive model can not!)



Introduction Transformation approach Goodness of fit The relsurv package

Checking the proportional hazards assumption
published: Stare, Pohar, Henderson; SIM 2005

The Cox model
The multiplicative model and the Cox model in
transformed time can both be seen as special cases of
the Cox model
Schoenfeld residuals can be used for both graphical
and formal evaluation of the PH assumption

The additive model
No methods exist
A new kind of residuals is introduced - the partial
residuals
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Ideas to be modified for use in relative survival

Cox additive

Definition Ui = Xi − Êi(X |ti) Xi −
P

Xj
λjP
λk

Xi −
P

Xj
λPj +λEjP
(λPk +λEk )

x

Properties
R

HdM X X
x

score function X X
Graphical
inspection X X x

Convergence in β0 X X x

to Brownian

in β̂ X X

bridge

# covariates> 1 X X
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P

Xj
λjP
λk

Xi −
P

Xj
λPj +λEjP
(λPk +λEk )

x

Properties
R

HdM X X
x

score function X X
Graphical
inspection X X x

Convergence in β0 X X x

to Brownian

in β̂ X X

bridge

# covariates> 1 X X



Introduction Transformation approach Goodness of fit The relsurv package

Ideas to be modified for use in relative survival

Cox additive

Definition Ui = Xi − Êi(X |ti) Xi −
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The quality of Brownian bridge approximation

In theory

Asymptotic distribution exists

Taylor series expansion: Brownian bridge + residual

Residual size depends on: variance of the covariate in time

In practice

The proportion of tests rejecting under the null hypothesis
(α = 0.05): 0.03-0.05

The test statistic can only be conservative

Resampling approach (resample fom the distribution
defined by the covariates and estimated coefficients)
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Speed of convergence

Comparable to the ideal case (i.i.d. variables)

The maximum (weighted) BB statistic: 100 (conservative
otherwise)

The Cramér - Von Mises statistic: 50

Effective sample size depends on: censoring, baseline
excess hazard
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Power
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Power
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Introduction Transformation approach Goodness of fit The relsurv package

To sum up

The partial residuals are useful in checking the PH
assumption in the additive model
Theoretical deficiencies are not important for practical
use - the Brownian bridge theory can be used
The choice of the test statistic should be based on the
alternative hypothesis
The Cramér - Von Mises statistic more appropriate with
small sample sizes



Introduction Transformation approach Goodness of fit The relsurv package

relsurv package
published: Pohar, Stare, CMPB 2006; CRAN

The package ensures easy use of relative survival methods
provides a uniform syntax for all the models using any
format of population tables
> rs.fun(Surv(time,cens) ∼ variables,data,ratetable)

rsadd, rstrans, rsmul
simplifies transformation of population tables into R
transrate.hld, transrate.hmd, transrate,
joinrate

functions for checking goodness of fit rs.zph, rs.br
provides methods for plotting results plot.rsurvfit,
plot.rs.zph, plot.rs.br



Introduction Transformation approach Goodness of fit The relsurv package

relsurv package

available at CRAN
the most complete and flexible package for relative
survival
usable with any format of population tables
thoroughly checked and compared to results in other
software
enriched by the options required by the users
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= Xi −
X
j∈Ri

Xj
λjP

k∈Ri

λk

additive model
partial residuals

Ui : = Xi − Ê(X , ti)
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Properties

Residuals can be expressed as martingales

U(β0, t) =
nX

i=1

tZ
0

n
Xi(u)− Ê(X |u, β0)

o
dNi (u)

=
nX

i=1

tZ
0

n
Xi(u)− Ê(X |u, β0)

o
dMi (u)

Therefore,

EU(β0, t) = 0

EUi(β
0, t) = 0

cov
“

Ui(β
0, t), Uj(β

0, t)
”

= 0

variance of the residual
process can be computed

6 6
predictable
process

martingale

y

Schoenfeld residuals follow from the score function

U(β̂,∞) =
nP

i=1
Ui(β̂) = 0 This is not true in the additive model case!
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Xi(u)− Ê(X |u, β0)

o
dMi (u)

Therefore,

EU(β0, t) = 0

EUi(β
0, t) = 0

cov
“

Ui(β
0, t), Uj(β

0, t)
”

= 0

variance of the residual
process can be computed6 6

predictable
process

martingale

y

Schoenfeld residuals follow from the score function

U(β̂,∞) =
nP

i=1
Ui(β̂) = 0 This is not true in the additive model case!



Properties

Residuals can be expressed as martingales

U(β0, t) =
nX

i=1

tZ
0

n
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Graphical inspection
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Brownian motion constructed as the sum of residuals

Cox model & additive model

B(β0,
k
n

) =
1
√

n

kX
i=1

Ui (β0)p
Vi (β0)

n→∞→ Brownian motion

BB(β0,
k
n

) = B(β0,
k
n

)−
k
n

B(β0, 1)
n→∞→ Brownian bridge

Notation
Ui Schoenfeld-

like
residuals

V variance

n number of
deaths

β0 true
regression
coefficient
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Tests based on Brownian bridge properties

β0 in time brownian bridge process test statistic

T1
max(abs(BB(t))

T2
max using weighted residuals

T3
Cramer−Von Mises∫ 1

0 BB2(t)dt − (
∫ 1

0 BB(t)dt)2

y
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