Prileganje regresijskih modelov za relativno preživetje Goodness of fit of relative survival models

Maja Pohar Perme
doktorsko delo

mentor prof. dr. Janez Stare

Ljubljana, marec 2007

Objectives

The goal of relative survival regression
To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Objectives

The goal of relative survival regression
To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Objectives

The goal of relative survival regression
To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Additive model
$\lambda_{O}=\lambda_{P}+\lambda_{E}$

Multiplicative model

$$
\lambda_{O}=\lambda_{P} * \nu
$$

Objectives

The goal of relative survival regression
To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Additive model
$\lambda_{O}=\lambda_{P}+\lambda_{E}$

Multiplicative model

$$
\lambda_{O}=\lambda_{P} * \nu
$$

assumptions

Objectives

The goal of relative survival regression
To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.

Additive model
$\lambda_{O}=\lambda_{P}+\lambda_{E}$

Multiplicative model

$$
\lambda_{O}=\lambda_{P} * \nu
$$

assumptions

1. Avoid assumptions about
relationship between λ_{O} and λ_{P}

Objectives

The goal of relative survival regression
To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.
Additive model
$\lambda_{O}=\lambda_{P}+\lambda_{E}$

Multiplicative model

$$
\lambda_{O}=\lambda_{P} * \nu
$$

assumptions

1. Avoid assumptions about relationship between λ_{O} and λ_{P}

2. Check

 proportional hazards assumption
Objectives

The goal of relative survival regression
To estimate the effect of covariates on mortality caused by a disease even though the cause of death is unknown.
Additive model
$\lambda_{O}=\lambda_{P}+\lambda_{E}$

Multiplicative model

$$
\lambda_{O}=\lambda_{P} * \nu
$$

assumptions

1. Avoid assumptions about relationship between λ_{O} and λ_{P}

for all existing and new methods

Transformation approach

published: Stare, Henderson, Pohar, JRSS C, 2005

F_{P}

Transformation approach

published: Stare, Henderson, Pohar, JRSS C, 2005

F_{P}

Transformation approach

published: Stare, Henderson, Pohar, JRSS C, 2005

$F_{P}(T)$

Transformation approach

published: Stare, Henderson, Pohar, JRSS C, 2005

$$
Y=F_{P}(T)
$$

Transformation approach

published: Stare, Henderson, Pohar, JRSS C, 2005

$$
Y=F_{P}(T)
$$

Transformation approach

published: Stare, Henderson, Pohar, JRSS C, 2005

$$
Y=F_{P}(T)
$$

Transformation approach

published: Stare, Henderson, Pohar, JRSS C, 2005

New outcome variable

$$
Y=F_{P}(T)
$$

Properties

Properties

- New outcome variable. Censoring status and covariate values remain unchanged
- Any survival analysis method can be used
- $T \sim F_{P} \Rightarrow Y \sim U[0,1]$
- Patients can live better than the population

Properties

Properties

- New outcome variable. Censoring status and covariate values remain unchanged
- Any survival analysis method can be used
- $T \sim F_{P} \Rightarrow Y \sim U[0,1]$
- Patients can live better than the population

Cox model $\quad \lambda(y)=\lambda_{0}(y) e^{b x}$

- natural choice - new time ordering
- the covariates not included in the population tables keep the same coefficient

Comparison of the models - interpretation

hazard

Comparison of the models - interpretation

hazard

Comparison of the models - interpretation

does excess hazard differ?

Comparison of the models - interpretation

does excess hazard differ?

Comparison of the models - interpretation

does excess hazard differ?
does the observed hazard ratio differ from the population hazard ratio?

Comparison of the models - interpretation

does excess hazard differ?
does the observed hazard ratio differ from the population hazard ratio?

Comparison of the models - interpretation

does excess hazard differ?
does the observed hazard ratio differ from the population hazard ratio?
are residual lifetimes equally affected?

Comparison of the models - interpretation

does excess hazard differ?
does the observed hazard ratio differ from the population hazard ratio?
are residual lifetimes equally affected?

Comparison of the models - interpretation

relative survival curve

does the observed hazard ratio differ from the population hazard ratio?
are residual lifetimes equally affected?

Comparison of the models - interpretation

relative survival curve

are residual lifetimes equally affected?

Comparison of the models - interpretation

Comparison of the models - interpretation

Comparison of the models - interpretation

Comparison of the models

The coefficient values (for the covariates used in the population tables) estimated in different models are different and require a different interpretation

- $T \sim F_{P} \Rightarrow$ results of all models are equal
- $\nu_{0}=$ const. \Rightarrow Cox in $\mathrm{Y}=$ multiplicative
- general case \Rightarrow all models different, but multiplicative and Cox in Y usually closer. The proportional hazards assumption is not met simultaneously.

Transformation approach

- Avoids the assumption about the relationship between the observed and population hazard
- Provides new information about relative survival
- Only the outcome variable changes - all methods from the classical survival analysis can be used
- Can be used when certain groups of patients live better than the population (additive model can not!)

Checking the proportional hazards assumption

 published: Stare, Pohar, Henderson; SIM 2005The Cox model

- The multiplicative model and the Cox model in transformed time can both be seen as special cases of the Cox model
- Schoenfeld residuals can be used for both graphical and formal evaluation of the PH assumption

The additive model

- No methods exist
- A new kind of residuals is introduced - the partial residuals

Ideas to be modified for use in relative survival

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_{i}=X_{i}-\hat{E}_{i}\left(X \mid t_{i}\right)$	$X_{i}-\sum x_{j} \frac{\lambda_{i}}{\sum \lambda_{k}}$	$X_{i}-\sum x_{j} \frac{\lambda_{p}+\lambda_{E j}}{\sum\left(\lambda \lambda_{k}+\lambda_{E k}\right)}$	Θ
Properties	$\int H d M$	\checkmark	\checkmark	

Ideas to be modified for use in relative survival

		Cox	additive	
Definition	$U_{i}=X_{i}-\hat{E}_{i}\left(X \mid t_{i}\right)$	$X_{i}-\sum X_{j} \frac{\lambda_{j}}{\sum \lambda_{k}}$	$X_{i}-\sum X_{j} \frac{\lambda_{P j}+\lambda_{E j}}{\sum\left(\lambda_{P k}+\lambda_{E k}\right)}$	
Properties	$\int H d M$	\checkmark	\checkmark	
	score function	\checkmark	\mathbf{X}	

Ideas to be modified for use in relative survival

Definition		Cox	additive	
	$U_{i}=X_{i}-\hat{E}_{(}\left(X t_{i}\right)$	$x_{i}-\sum x_{i} \frac{\lambda_{i}}{\Sigma \lambda_{k}}$		\odot
Properties	${ }^{5} \mathrm{HaM}$	\underline{v}	-	-
	score functio	\checkmark	x	
inspection		\checkmark	\checkmark	\odot

Ideas to be modified for use in relative survival

Definition	$U_{i}=X_{i}-\hat{E}_{i}\left(X \mid t_{i}\right)$	Cox	additive	
		$x_{i}-\sum x_{j} \frac{\lambda_{i}}{\sum \lambda_{k}}$	$x_{i}-\sum x_{i} \frac{\lambda_{P_{i}+\lambda_{E i}}^{\sum\left(\lambda_{k K}+\lambda_{E K}\right)}}{}$	©
Properties	\int HdM	\checkmark	\checkmark	\cdots
	score function	\checkmark	X	
Graphical inspection		\checkmark	\checkmark	${ }^{-}$
Convergence to Brownian bridge	in β^{0}	\checkmark	\checkmark	\bullet

Ideas to be modified for use in relative survival

Definition	$U_{i}=X_{i}-\hat{E}_{i}\left(X \mid t_{i}\right)$	Cox	additive	
		$x_{i}-\sum x_{j} \frac{\lambda_{j}}{\lambda_{k}}$	$x_{i}-\sum x_{j} \frac{\lambda_{P}+\lambda_{E j}}{\left(\lambda_{\left.\lambda_{k}+\lambda_{E k}\right)}\right.}$	\cdots
Properties	$\int \mathrm{HdM}$	\checkmark	\checkmark	Θ
	score function	\checkmark	X	
Graphical inspection		\checkmark	\checkmark	\cdots
Convergence to Brownian bridge	$\begin{aligned} & \text { in } \beta^{0} \\ & \text { in } \hat{\beta} \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & v \\ & x \end{aligned}$	Θ

Ideas to be modified for use in relative survival

Definition	$U_{i}=X_{i}-\hat{E}_{i}\left(X \mid t_{i}\right)$	Cox	additive	
		$x_{i}-\sum x_{j} \frac{\lambda_{i}}{\sum \lambda_{k}}$	$x_{i}-\sum x_{j} \frac{\lambda_{P}+\lambda_{j}}{\left(\lambda_{\text {P }}+\lambda_{E k}\right)}$	\bigcirc
Properties	$\int \mathrm{HdM}$	\checkmark	\checkmark	\cdots
	score function	\checkmark	x	
Graphical inspection		\checkmark	\checkmark	\bigcirc
Convergence to Brownian bridge	$\begin{gathered} \text { in } \beta^{0} \\ \text { in } \hat{\beta} \\ \text { \# covariates }>1 \end{gathered}$		$\begin{aligned} & y \\ & x \\ & x \end{aligned}$	Θ

The quality of Brownian bridge approximation

In theory

- Asymptotic distribution exists
- Taylor series expansion: Brownian bridge + residual
- Residual size depends on: variance of the covariate in time

The quality of Brownian bridge approximation

In theory

- Asymptotic distribution exists
- Taylor series expansion: Brownian bridge + residual
- Residual size depends on: variance of the covariate in time

In practice

- The proportion of tests rejecting under the null hypothesis ($\alpha=0.05$): 0.03-0.05
- The test statistic can only be conservative
- Resampling approach (resample fom the distribution defined by the covariates and estimated coefficients)

Speed of convergence

- Comparable to the ideal case (i.i.d. variables)
- The maximum (weighted) BB statistic: 100 (conservative otherwise)
- The Cramér - Von Mises statistic: 50
- Effective sample size depends on: censoring, baseline excess hazard

Power

Power

sample size change in β
(1) (1) $n=250$ rejected $=4.1 \%$
(1) (1) $\Delta=0$

Power

sample size change in β
 (1) (1) $n=250$ rejected $=8.4 \%$
 (1) (1) $\Delta=0.25$

Power

sample size change in β
 (1) $n=250$ rejected $=28.4 \%$
 (1) (1) $\Delta=0.5$

Power

sample size change in β
 (1) $n=250$ rejected $=58.7 \%$
 (1) (1) $\Delta=0.75$

Power

sample size change in β
 (1) $n=250$ rejected $=81.9 \%$
 (1) (1) $\Delta=1$

Power

sample size change in β
 (1) (1) $n=500$ rejected $=5 \%$
 (1) (1) $\Delta=0$

Power

sample size change in β
 (1) (1) $n=500$ rejected $=15.4 \%$
 (1) (1) $\Delta=0.25$

Power

sample size change in β
 (1) (1) $n=500$ rejected $=56.9 \%$
 (1) (1) $\Delta=0.5$

Power

sample size change in β
 (1) $n=500$ rejected $=89.8 \%$
 (1) (1) $\Delta=0.75$

Power

sample size change in β
 (1) $n=500$ rejected $=99 \%$
 (1) (1) $\Delta=1$

Power

sample size change in β
 (1) $n=1000$ rejected $=5 \%$
 (1) (1) $\Delta=0$

Power

sample size change in β
 (1) (1) $n=1000$ rejected $=34.9 \%$
 (1) (1) $\Delta=0.25$

Power

sample size change in β
 (1) $n=1000$ rejected $=88.7 \%$
 (1) (1) $\Delta=0.5$

Power

sample size change in β
 (1) $n=1000$ rejected $=99.6 \%$
 (1) (1) $\Delta=0.75$

Power

sample size change in β
 (1) $n=1000$ rejected $=100 \%$
 (1) (1) $\Delta=1$

To sum up

- The partial residuals are useful in checking the PH assumption in the additive model
- Theoretical deficiencies are not important for practical use - the Brownian bridge theory can be used
- The choice of the test statistic should be based on the alternative hypothesis
- The Cramér - Von Mises statistic more appropriate with small sample sizes

relsurv package
 published: Pohar, Stare, CMPB 2006; CRAN

The package ensures easy use of relative survival methods

- provides a uniform syntax for all the models using any format of population tables
> rs.fun(Surv(time, cens) ~ variables, data, ratetable) rsadd, rstrans, rsmul
- simplifies transformation of population tables into \mathbf{R} transrate.hld, transrate.hmd, transrate, joinrate
- functions for checking goodness of fit rs.zph, rs.br
- provides methods for plotting results plot.rsurvfit, plot.rs.zph, plot.rs.br

relsurv package

- available at CRAN
- the most complete and flexible package for relative survival
- usable with any format of population tables
- thoroughly checked and compared to results in other software
- enriched by the options required by the users

Bibliography

軎 Stare J．，Henderson R．，Pohar M．
An individual measure of relative survival
Journal of Royal Statistical Society－C， 2005
居 Stare J．，Pohar M．，Henderson R．
Goodness of fit of relative survival models
Statistics in Medicine， 2005
圊 Pohar M．，Stare J．
Relative survival analysis in R
Computer methods and programs in biomedicine， 2006

Definition of residuals

Definition of residuals

Cox model
 Schoenfeld residuals

$X_{i} \quad \hat{E}\left(X, t_{i}\right)$
additive model partial residuals

$$
X_{i} \quad \hat{E}\left(X, t_{i}\right)
$$

Definition of residuals

Cox model
 Schoenfeld residuals

$$
X_{i}-\hat{E}\left(X, t_{i}\right)
$$

additive model partial residuals

$$
X_{i}-\hat{E}\left(X, t_{i}\right)
$$

Notation

X covariate
$t_{i} \quad i$ th event time

Definition of residuals

Cox model

Schoenfeld residuals

$$
U_{i}=X_{i}-\hat{E}\left(X, t_{i}\right)
$$

additive model partial residuals

$$
U_{i}:=X_{i}-\hat{E}\left(X, t_{i}\right)
$$

Notation

X covariate
$t_{i} \quad i$ th event time
U_{i} residual

Definition of residuals

Cox model
 Schoenfeld residuals

$$
\begin{aligned}
U_{i} & =X_{i}-\hat{E}\left(X, t_{i}\right) \\
& =X_{i}-\sum_{j \in R_{i}} X_{j} \frac{\lambda_{j}}{\sum_{k \in R_{i}} \lambda_{k}}
\end{aligned}
$$

additive model

 partial residuals$$
\begin{aligned}
U_{i}: & =X_{i}-\hat{E}\left(X, t_{i}\right) \\
& =X_{i}-\sum_{j \in R_{i}} X_{j} \frac{\lambda_{P j}+\lambda_{E j}}{\sum_{k \in R_{i}}\left(\lambda_{P k}+\lambda_{E k}\right)}
\end{aligned}
$$

Notation
X covariate
$t_{i} \quad$ ith event time
U_{i} residual
R_{i} risk set at time i
λ_{j} hazard for person j
λ_{P} population hazard
λ_{E} excess hazard

Properties

Residuals can be expressed as martingales

$$
\begin{aligned}
U\left(\beta^{0}, t\right) & =\sum_{i=1}^{n} \int_{0}^{t}\left\{\mathbf{X}_{\mathbf{i}}(u)-\hat{E}\left(X \mid u, \beta^{0}\right)\right\} d N_{i}(u) \\
& =\sum_{i=1}^{n} \int_{0}^{t}\left\{\mathbf{X}_{\mathbf{i}}(u)-\hat{E}\left(X \mid u, \beta^{0}\right)\right\} d M_{i}(u)
\end{aligned}
$$

Properties

Residuals can be expressed as martingales
$U\left(\beta^{0}, t\right)=\sum_{i=1}^{n} \int_{0}^{t}\left\{\mathbf{x}_{\mathbf{i}}(u)-\hat{E}\left(X \mid u, \beta^{0}\right)\right\} d N_{i}(u)$
$=\sum_{i=1}^{n} \int_{0}^{t}\left\{\mathbf{x}_{\mathbf{i}}(u)-\hat{E}\left(X \mid u, \beta^{0}\right)\right\} d M_{i}(u)$

Therefore,

$$
\begin{aligned}
E \mathbf{U}\left(\beta^{0}, t\right) & =\mathbf{0} \\
E \mathbf{U}_{\mathbf{i}}\left(\beta^{0}, t\right) & =\mathbf{0}
\end{aligned}
$$

$$
\operatorname{cov}\left(\mathbf{U}_{\mathbf{i}}\left(\beta^{0}, \mathrm{t}\right), \mathbf{U}_{\mathbf{j}}\left(\beta^{0}, \mathrm{t}\right)\right)=\mathbf{0}
$$

variance of the residual process can be computed

Properties

Residuals can be expressed as martingales

$$
\begin{aligned}
U\left(\beta^{0}, t\right) & =\sum_{i=1}^{n} \int_{0}^{t}\left\{\mathbf{x}_{\mathbf{i}}(u)-\hat{E}\left(X \mid u, \beta^{0}\right)\right\} d N_{i}(u) \\
& =\sum_{i=1}^{n} \int_{0}^{t}\left\{\mathbf{x}_{\mathbf{i}}(u)-\hat{E}\left(X \mid u, \beta^{0}\right)\right\} d M_{i}(u)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E \mathbf{U}\left(\beta^{0}, t\right) & =\mathbf{0} \\
E \mathbf{U}_{\mathbf{i}}\left(\beta^{0}, t\right) & =\mathbf{0}
\end{aligned}
$$

$$
\operatorname{cov}\left(\mathbf{U}_{\mathbf{i}}\left(\beta^{0}, \mathrm{t}\right), \mathbf{U}_{\mathbf{j}}\left(\beta^{0}, \mathrm{t}\right)\right)=\mathbf{0}
$$

variance of the residual process can be computed

Schoenfeld residuals follow from the score function
$U(\hat{\beta}, \infty)=\sum_{i=1}^{n} U_{i}(\hat{\beta})=0 \quad$ This is not true in the additive model case!

Graphical inspection

Brownian motion constructed as the sum of residuals

Cox model \& additive model

$$
\begin{aligned}
& B\left(\beta_{0}, \frac{k}{n}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{k} \frac{U_{i}\left(\beta_{0}\right)}{\sqrt{V_{i}\left(\beta_{0}\right)}} \xrightarrow{n \rightarrow \infty} \text { Brownian motion } \\
& B B\left(\beta_{0}, \frac{k}{n}\right)=B\left(\beta_{0}, \frac{k}{n}\right)-\frac{k}{n} B\left(\beta_{0}, 1\right) \xrightarrow{n \rightarrow \infty} \text { Brownian bridge }
\end{aligned}
$$

Notation

U_{i} Schoenfeldlike residuals
\checkmark variance
n number of deaths
β_{0} true regression coefficient

Tests based on Brownian bridge properties

β^{0} in time	brownian bridge process	test statistic
-		T_{1} $\max (\operatorname{abs}(B B(t))$
-		T_{2} max using weighted residuals
-		T_{3} Cramer-Von Mises $\int_{0}^{1} B B^{2}(t) d t-\left(\int_{0}^{1} B B(t) d t\right)^{2}$

