Dynamic Analysis of Recurrent Event Data, with Application to Infant Diarrhoea in Brazil

Ørnulf Borgan

Rosemeire Fiaccone

and
Robin.Henderson@ncl.ac.uk

Blue Bay Project

Public works and education in the areas of sanitation and environment executed by the Bahia State Government, Brazil
> \$1 billion

Belgica 1996

Belgica 2002

Data

Daily data from household survey
Home visits over 455 days October 2000 to January 2002
We use 926 children with＞ 90 days follow－up
Age <3 years on entry
Various social，demographic and economic characteristics collected at the beginning of the study
Interested in incidence and prevalence of diarrhoea over calendar time

Point Processes

Counting Processes \& Additive Model

- $\mathbf{N}_{\mathbf{i}}(\mathbf{t})=\mathbf{\Lambda}_{\mathbf{i}}(\mathbf{t})+\mathbf{M}_{\mathbf{i}}(\mathbf{t})$

Counting Processes \& Additive Model

- $\mathbf{N}_{\mathbf{i}}(\mathbf{t})=\mathbf{\Lambda}_{\mathbf{i}}(\mathbf{t})+\mathbf{M}_{\mathbf{i}}(\mathbf{t})$
- $\boldsymbol{\Lambda}_{\mathbf{i}}(\mathbf{t})=\int_{0}^{\mathbf{t}} \mathbf{Y}_{\mathbf{i}}(\mathbf{u}) \alpha_{\mathbf{i}}(\mathbf{u}) \mathbf{d} \mathbf{u}=\int_{0}^{\mathbf{t}} \lambda_{\mathbf{i}}(\mathbf{u}) \mathbf{d} \mathbf{u}$

Counting Processes \& Additive Model

- $\mathbf{N}_{\mathbf{i}}(\mathbf{t})=\mathbf{\Lambda}_{\mathbf{i}}(\mathbf{t})+\mathbf{M}_{\mathbf{i}}(\mathbf{t})$
- $\boldsymbol{\Lambda}_{\mathbf{i}}(\mathbf{t})=\int_{0}^{\mathbf{t}} \mathbf{Y}_{\mathbf{i}}(\mathbf{u}) \alpha_{\mathbf{i}}(\mathbf{u}) \mathbf{d} \mathbf{u}=\int_{0}^{\mathbf{t}} \lambda_{\mathbf{i}}(\mathbf{u}) \mathbf{d} \mathbf{u}$
- $\lambda_{\mathbf{i}}(\mathbf{t})=\mathbf{Y}_{\mathbf{i}}(\mathbf{t})\left\{\beta_{\mathbf{0}}(\mathbf{t})+\mathbf{x}_{\mathbf{i} 1}(\mathbf{t}) \beta_{\mathbf{1}}(\mathbf{t})+\mathbf{x}_{\mathbf{i} 2}(\mathbf{t}) \beta_{\mathbf{2}}(\mathbf{t})+\ldots\right\}$

- $\mathbf{B}_{\mathbf{j}}(\mathbf{t})=\int_{\mathbf{0}}^{\mathbf{t}} \beta_{\mathrm{j}}(\mathbf{u}) \mathbf{d u}$
- $\mathbf{B}_{\mathbf{j}}(\mathbf{t})=\int_{0}^{\mathbf{t}} \beta_{\mathbf{j}}(\mathbf{u}) \mathbf{d u}$
- $\mathbf{d N}(\mathrm{t})=\mathrm{X}(\mathrm{t}) \mathrm{dB}(\mathrm{t})+\mathrm{dM}(\mathrm{t})$
- $\mathbf{B}_{\mathbf{j}}(\mathbf{t})=\int_{0}^{\mathbf{t}} \beta_{\mathbf{j}}(\mathbf{u}) \mathbf{d u}$
- $\mathbf{d N}(\mathrm{t})=\mathrm{X}(\mathrm{t}) \mathrm{dB}(\mathrm{t})+\mathrm{dM}(\mathrm{t})$
- $\hat{\mathbf{B}}(\mathbf{t})=\int_{0}^{\mathbf{t}}\left(\mathbf{X}^{\boldsymbol{\top}}(\mathbf{u}) \mathbf{X}(\mathbf{u})\right)^{-1} \mathbf{X}^{\top}(\mathbf{u}) \mathbf{d N}(\mathbf{u})=\int_{0}^{\mathbf{t}} \mathbf{H}(\mathbf{u}) \mathbf{d N}(\mathbf{u})$
－ $\mathbf{B}_{\mathbf{j}}(\mathbf{t})=\int_{0}^{\mathbf{t}} \beta_{\mathbf{j}}(\mathbf{u}) \mathbf{d u}$
－ $\mathbf{d N}(\mathbf{t})=\mathbf{X}(\mathbf{t}) \mathrm{dB}(\mathrm{t})+\mathbf{d M}(\mathrm{t})$
－$\hat{\mathbf{B}}(\mathbf{t})=\int_{0}^{\mathbf{t}}\left(\mathbf{X}^{\boldsymbol{\top}}(\mathbf{u}) \mathbf{X}(\mathbf{u})\right)^{-1} \mathbf{X}^{\top}(\mathbf{u}) \mathbf{d N}(\mathbf{u})=\int_{0}^{\mathbf{t}} \mathbf{H}(\mathbf{u}) \mathbf{d N}(\mathbf{u})$
－$\hat{B}(t)-B(t)=\int_{0}^{t} H(u) d M(u)$
- $\mathbf{B}_{\mathbf{j}}(\mathbf{t})=\int_{0}^{\mathbf{t}} \beta_{\mathbf{j}}(\mathbf{u}) \mathbf{d u}$
- $\mathbf{d N}(\mathrm{t})=\mathrm{X}(\mathrm{t}) \mathrm{dB}(\mathrm{t})+\mathrm{dM}(\mathrm{t})$
- $\hat{\mathbf{B}}(\mathbf{t})=\int_{0}^{\mathbf{t}}\left(\mathbf{X}^{\top}(\mathbf{u}) \mathbf{X}(\mathbf{u})\right)^{-\mathbf{1}} \mathbf{X}^{\top}(\mathbf{u}) \mathbf{d N}(\mathbf{u})=\int_{0}^{\mathbf{t}} \mathbf{H}(\mathbf{u}) \mathbf{d N}(\mathbf{u})$
- $\hat{B}(t)-B(t)=\int_{0}^{t} H(u) d M(u)$
- Standard results apply for correctly specified models, ie $\mathrm{E}\left[\mathrm{dN}(\mathbf{t}) \mid \mathcal{F}_{\mathbf{t}^{-}}\right]$

－ $\mathbf{B}_{\mathbf{j}}(\mathbf{t})=\int_{0}^{\mathbf{t}} \beta_{\mathbf{j}}(\mathbf{u}) \mathbf{d u}$
－ $\mathbf{d N}(\mathbf{t})=\mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M}(\mathbf{t})$
－$\hat{B}(\mathbf{t})=\int_{0}^{\mathbf{t}}\left(\mathbf{X}^{\top}(\mathbf{u}) \mathbf{X}(\mathbf{u})\right)^{-1} \mathbf{X}^{\top}(\mathbf{u}) \mathbf{d N}(\mathbf{u})=\int_{0}^{\mathbf{t}} \mathbf{H}(\mathbf{u}) \mathbf{d N}(\mathbf{u})$
－$\hat{B}(t)-B(t)=\int_{0}^{t} H(u) d M(u)$
－Standard results apply for correctly specified models，ie $\mathrm{E}\left[\mathrm{dN}(\mathrm{t}) \mid \mathcal{F}_{\mathbf{t}^{-}}\right]$

Lorelogram (Heagerty and Zeger, 1998)

(log odds ratio for event or no events separated by lags 1,2,3,...)

Dynamic Covariates (Aalen et al 2004, Fosen et al 2005)
Dynamic covariates $Z(t)$ are functions of individual-specific histories
$\operatorname{Eg} Z(t)=$ previous diarrhoea rate (episodes/time)

Dynamic Covariates（Aalen et al 2004，Fosen et al 2005）
Dynamic covariates $Z(t)$ are functions of individual－specific histories
$\operatorname{Eg} Z(t)=$ previous diarrhoea rate（episodes／time）

Example：test for effect of rain－affected accommodation

Model	Rain－affected	Previous episode rate
No dynamic	3.70	

Dynamic Covariates (Aalen et al 2004, Fosen et al 2005)
Dynamic covariates $Z(t)$ are functions of individual-specific histories
$\operatorname{Eg} Z(t)=$ previous diarrhoea rate (episodes/time)

Example: test for effect of rain-affected accommodation

Model	Rain-affected	Previous episode rate
No dynamic	3.70	
Include $Z(t)$	1.53	6.78

$$
\beta_{\mathrm{NX}}(\mathbf{t})=\beta_{\mathrm{NX} . \mathrm{Z}}(\mathbf{t})+\beta_{\mathrm{NZ}}(\mathbf{t}) \beta_{\mathbf{Z X}}(\mathbf{t})
$$

Solution

- Assume

$$
\mathbf{Z}(\mathbf{t})=\mathbf{X}(\mathbf{t}) \gamma(\mathbf{t})+\mathbf{R}(\mathbf{t})
$$

Solution

－Assume

$$
\mathbf{Z}(\mathbf{t})=\mathbf{X}(\mathbf{t}) \gamma(\mathbf{t})+\mathbf{R}(\mathbf{t})
$$

－Use

$$
\hat{\mathbf{R}}(\mathbf{t})=\mathbf{Z}(\mathbf{t})-\left(\mathbf{X}^{\top}(\mathbf{t}) \mathbf{X}(\mathbf{t})\right)^{-\mathbf{1}} \mathbf{X}^{\top}(\mathbf{t}) \mathbf{Z}(\mathbf{t})
$$

Example: test for effect of rain-affected accommodation

$Z(t)=$ previous diarrhoea rate (episodes/time)

Model	Rain-affected	Previous episode rate
No dynamic	3.70	
Include $Z(t)$	1.53	6.78
Include $R(t)$	3.79	6.77

Residual processes: $\mathbf{d N}(\mathbf{t})-\mathbf{X}(\mathbf{t}) \mathbf{d} \hat{\mathbf{B}}(\mathbf{t})$
Standardised by model SD

Empirical SD of Standardised Residuals

Another Diagnostic (Diggle et al 2007)

- $\operatorname{Cov}\left(M\left(\mathrm{t}_{\mathbf{0}}\right), \mathrm{M}(\mathrm{t})\right)=\operatorname{Var}\left(\mathrm{M}\left(\mathrm{t}_{\mathbf{0}}\right)\right) \quad \mathrm{t}>\mathrm{t}_{\mathbf{0}}$

Another Diagnostic (Diggle et al 2007)

- $\operatorname{Cov}\left(M\left(\mathrm{t}_{\mathbf{0}}\right), \mathrm{M}(\mathrm{t})\right)=\operatorname{Var}\left(\mathrm{M}\left(\mathrm{t}_{\mathbf{0}}\right)\right) \quad \mathrm{t}>\mathrm{t}_{\mathbf{0}}$
- Plot of $\operatorname{Cov}\left(\hat{\mathbf{M}}\left(\mathrm{t}_{0}\right), \hat{\mathrm{M}}(\mathrm{t})\right)$ against \mathbf{t} should be flat

Another Diagnostic (Diggle et al 2007)

- $\operatorname{Cov}\left(M\left(\mathrm{t}_{\mathbf{0}}\right), \mathrm{M}(\mathrm{t})\right)=\operatorname{Var}\left(\mathrm{M}\left(\mathrm{t}_{\mathbf{0}}\right)\right) \quad \mathrm{t}>\mathrm{t}_{\mathbf{0}}$
- Plot of $\operatorname{Cov}\left(\hat{\mathbf{M}}\left(\mathbf{t}_{0}\right), \hat{\mathrm{M}}(\mathrm{t})\right)$ against \mathbf{t} should be flat
- Could try various t_{0}

Martingale Covariance Plot

Some Incidence Results

Some Incidence Results

Also crowding, mother's age, child age, male

Frailty

- True model: $\mathbf{d N}(\mathbf{t})=\mathbf{Z} \times \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M}(\mathbf{t})$

Frailty

- True model: $\mathbf{d N}(\mathbf{t})=\mathbf{Z} \times \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M} \mathbf{Z}^{(t)}$
- Fitted model: $\mathbf{d N}(\mathbf{t})=\mathbf{E}\left[\mathbf{Z} \mid \mathcal{F}_{\mathbf{t}^{-}}\right] \mathbf{X}(\mathrm{t}) \mathbf{d B}(\mathrm{t})+\mathbf{d M}(\mathrm{t})$

Frailty

- True model: $\mathbf{d N}(\mathbf{t})=\mathbf{Z} \times \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M} \mathbf{Z}_{\mathbf{Z}}(\mathbf{t})$
- Fitted model: $\mathbf{d N}(\mathbf{t})=\mathbf{E}\left[\mathbf{Z} \mid \mathcal{F}_{\mathbf{t}^{-}}\right] \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathrm{t})+\mathbf{d M}(\mathrm{t})$
- $\mathbf{Z}_{\mathbf{i}} \sim \boldsymbol{\Gamma}(\mathbf{1} / \xi, \mathbf{1} / \xi)$

$$
\mathbf{E}\left[\mathbf{Z}_{\mathbf{i}} \mid \mathcal{F}_{\mathbf{t}^{-}}\right]=\frac{\mathbf{1 + \xi} \mathbf{N}_{\mathbf{i}}\left(\mathbf{t}^{-}\right)}{1+\xi \mathbf{\Lambda}_{\mathbf{i}}\left(\mathbf{t}^{-}\right)}
$$

Frailty

－True model： $\mathbf{d N}(\mathbf{t})=\mathbf{Z} \times \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M} \mathbf{Z}_{\mathbf{Z}}(\mathbf{t})$
－Fitted model： $\mathbf{d N}(\mathbf{t})=\mathbf{E}\left[\mathbf{Z} \mid \mathcal{F}_{\mathbf{t}^{-}}\right] \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M}(\mathrm{t})$
－ $\mathbf{Z}_{\mathbf{i}} \sim \boldsymbol{\Gamma}(\mathbf{1} / \xi, \mathbf{1} / \xi)$

$$
\mathbf{E}\left[\mathbf{Z}_{\mathbf{i}} \mid \mathcal{F}_{\mathbf{t}^{-}}\right]=\frac{\mathbf{1 + \xi} \mathbf{N}_{\mathbf{i}}\left(\mathbf{t}^{-}\right)}{1+\xi \mathbf{\Lambda}_{\mathbf{i}}\left(\mathbf{t}^{-}\right)}
$$

－ $\mathbf{d} \hat{\mathbf{B}}_{\xi}(\mathbf{t})=\left(\mathbf{X}^{\boldsymbol{\top}}(\mathbf{t}) \mathbf{X}(\mathbf{t})\right)^{-1} \mathbf{X}^{\boldsymbol{\top}}(\mathbf{t}) \mathbf{d N}(\mathbf{t}) / \mathbf{E}\left[\mathbf{Z} \mid \mathcal{F}_{\mathbf{t}^{-}}\right]$

Frailty

－True model： $\mathbf{d N}(\mathbf{t})=\mathbf{Z} \times \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M} \mathbf{Z}_{\mathbf{Z}}(\mathbf{t})$
－Fitted model： $\mathbf{d N}(\mathbf{t})=\mathbf{E}\left[\mathbf{Z} \mid \mathcal{F}_{\mathbf{t}^{-}}\right] \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M}(\mathrm{t})$
－ $\mathbf{Z}_{\mathbf{i}} \sim \boldsymbol{\Gamma}(\mathbf{1} / \xi, \mathbf{1} / \xi)$

$$
\mathbf{E}\left[\mathbf{Z}_{\mathbf{i}} \mid \mathcal{F}_{\mathbf{t}^{-}}\right]=\frac{\mathbf{1 + \xi} \mathbf{N}_{\mathbf{i}}\left(\mathbf{t}^{-}\right)}{1+\xi \mathbf{\Lambda}_{\mathbf{i}}\left(\mathbf{t}^{-}\right)}
$$

－ $\mathbf{d} \hat{\mathbf{B}}_{\xi}(\mathbf{t})=\left(\mathbf{X}^{\boldsymbol{\top}}(\mathbf{t}) \mathbf{X}(\mathbf{t})\right)^{-\mathbf{1}} \mathbf{X}^{\boldsymbol{\top}}(\mathbf{t}) \mathbf{d N}(\mathbf{t}) / \mathbf{E}\left[\mathbf{Z} \mid \mathcal{F}_{\mathbf{t}^{-}}\right]$
－Estimate ξ by maximum（negative binomial）likelihood for $\mathbf{N}(\tau)$

Simulations

－$\tau=50$ ，discrete time
－Two binary covariates
－$\beta_{0}(\mathbf{t})=0.1 \quad \beta_{1}(\mathbf{t})=\beta_{2}(\mathbf{t})=\mathbf{0 . 0 5}$
－Fit
1．Fixed effects only
2．Dynamic covariate model A ： $\mathbf{D}(\mathbf{t})=\mathbf{N}(\mathbf{t}) / \mathbf{t}$
3．Dynamic covariate model B： $\mathbf{D}(\mathbf{t})=\{\mathbf{N}(\mathbf{t})-\mathbf{N}(\mathbf{t}-\mathbf{1 5})\} / \mathbf{1 5}$
4．Dynamic covariate model C： $\mathbf{D}(\mathbf{t})=\{\mathbf{N}(\mathbf{t})-\mathbf{N}(\mathbf{t}-\mathbf{1 0})\} / \mathbf{1 0}$
5．Frailty model

Diagnostics - fixed effects fit, frailty data

Diagnostics - frailty fit, frailty data

Diagnostics - dynamic fit A, frailty data

Diagnostics－dynamic fit B，frailty data

Diagnostics－dynamic fit C，frailty data

Sample of Blue Bay Data

Diarrhoea episodes in 926 children followed for 455 days

Multivariate gamma frailty (Henderson \& Shimakura 2003)

- Time varying $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \mathbf{t}=1,2, \ldots \tau$

Multivariate gamma frailty (Henderson \& Shimakura 2003)

- Time varying $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \mathbf{t}=1,2, \ldots \tau$
- Defined by Laplace transform

$$
\mathbf{E}\left\{\exp \left(-\mathbf{u}^{\prime} \mathbf{Z}\right)\right\}=|\mathbf{I}+\xi \mathbf{C} \times \operatorname{diag}(\mathbf{u})|^{-\mathbf{1} / \xi}
$$

- $\mathrm{C}_{\mathrm{jk}}=\rho^{\mathrm{j}-\mathrm{k} \mid / 2}$

Multivariate gamma frailty（Henderson \＆Shimakura 2003）
－Time varying $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \mathbf{t}=1,2, \ldots \tau$
－Defined by Laplace transform

$$
\mathbf{E}\left\{\exp \left(-\mathbf{u}^{\prime} \mathbf{Z}\right)\right\}=|\mathbf{I}+\xi \mathbf{C} \times \operatorname{diag}(\mathbf{u})|^{-\mathbf{1} / \xi}
$$

－ $\mathbf{C}_{\mathbf{j k}}=\rho^{|\mathbf{j}-\mathbf{k}| / 2}$
－ $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \sim \boldsymbol{\Gamma}(\mathbf{1} / \xi, \mathbf{1} / \xi) \quad \operatorname{Corr}\left(\mathbf{Z}_{\mathbf{i}}(\mathbf{t}), \mathbf{Z}_{\mathbf{i}}(\mathbf{u})\right)=\rho^{|\mathbf{t}-\mathbf{u}|}$

Multivariate gamma frailty（Henderson \＆Shimakura 2003）
－Time varying $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \mathbf{t}=1,2, \ldots \tau$
－Defined by Laplace transform

$$
\mathbf{E}\left\{\exp \left(-\mathbf{u}^{\prime} \mathbf{Z}\right)\right\}=|\mathbf{I}+\xi \mathbf{C} \times \operatorname{diag}(\mathbf{u})|^{-\mathbf{1} / \xi}
$$

－ $\mathbf{C}_{\mathbf{j k}}=\rho^{|\mathbf{j}-\mathbf{k}| / 2}$
－ $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \sim \boldsymbol{\Gamma}(\mathbf{1} / \xi, \mathbf{1} / \xi) \quad \operatorname{Corr}\left(\mathbf{Z}_{\mathbf{i}}(\mathbf{t}), \mathbf{Z}_{\mathbf{i}}(\mathbf{u})\right)=\rho^{|\mathbf{t}-\mathbf{u}|}$
－ $\mathbf{d N}(\mathbf{t})=\mathbf{Z}(\mathbf{t}) \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d} \mathbf{M}_{\mathbf{Z}}(\mathbf{t})$

Multivariate gamma frailty (Henderson \& Shimakura 2003)

- Time varying $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \mathbf{t}=1,2, \ldots \tau$
- Defined by Laplace transform

$$
\mathbf{E}\left\{\exp \left(-\mathbf{u}^{\prime} \mathbf{Z}\right)\right\}=|\mathbf{I}+\xi \mathbf{C} \times \operatorname{diag}(\mathbf{u})|^{-\mathbf{1} / \xi}
$$

- $\mathbf{C}_{\mathbf{j k}}=\rho^{|\mathbf{j}-\mathbf{k}| / 2}$
- $\mathbf{Z}_{\mathbf{i}}(\mathbf{t}) \sim \boldsymbol{\Gamma}(\mathbf{1} / \xi, \mathbf{1} / \xi) \quad \operatorname{Corr}\left(\mathbf{Z}_{\mathbf{i}}(\mathbf{t}), \mathbf{Z}_{\mathbf{i}}(\mathbf{u})\right)=\rho^{|\mathbf{t}-\mathbf{u}|}$
- $\mathbf{d N}(\mathbf{t})=\mathbf{Z}(\mathbf{t}) \mathbf{X}(\mathbf{t}) \mathbf{d B}(\mathbf{t})+\mathbf{d M} \mathbf{Z}(\mathbf{t})$
- Sims have $\rho=\mathbf{0 . 9 5}$, correlation 0.6 at lag 10

Diagnostics - fixed effects fit, correlated frailty data

Diagnostics - frailty fit, correlated frailty data

Diagnostics - dynamic fit A, correlated frailty data

Diagnostics－dynamic fit B，correlated frailty data

Diagnostics－dynamic fit C，correlated frailty data

How to fit?

