Solutions to the problem of monotone likelihood in Cox and logistic regression

Theory and applications

Georg Heinze
Core Unit of Medical Statistics and Informatics
Medical University of Vienna
georg.heinze@meduniwien.ac.at

- Monotone likelihood: examples
- Options of analysis
- Penalized likelihood (PL) estimates
- Profile PL confidence intervals
- Application to Cox, unconditional and conditional logistic regression
- General comments about bias reduction and PL estimates

Example 1: Preterm infants

From: Berger et al, J Perinat Med, 2003

Group	No CLD	CLD
No amniotic cavity culture found	40	0
Ureaplasma urealyticum found	17	4

OR estimate: 4/0 / 40/17 = infinite

Example 2: Urinary tract infection

From: Foxman et al, Epidemiology, 1997

Group	No infection	Infection
No diaphragm use	109	123
Diaphragm use	0	7

Other variables in the model:

Age, use of condoms, use of lubricated condoms, use of spermicides, oral contraceptives

Example 2: Urinary tract infection

- OR estimates of diaphragm use obtained by glm of SPLUS:
- Convergence criterion is change in deviance

Criterion	Estimate	Lower	Upper	P-value
0.001	220	8.0	6.5e5	0.06
0.0001	1726	4e-4	6.8e9	0.34
0.00001	34774	<1e-4	1.1e34	0.76

Example 3: Breast cancer

- From Lösch et al, Brit J Cancer, 1998
- Survival of 100 patients, 74 censored
- 4 risk factors (pT, N, G, CD)
- Analysis via Cox regression:

Faktor	RR (95% c.i.)	P-value
рТ	3.6 (1.3 – 9.6)	0.01
N	2.6 (1.1 – 5.9)	0.03
G	$248054 (0 - 2 \times 10^{188})$	0.95
CD	1.5 (0.6 – 3.6)	0.37

Common to examples 1-3:

- Degenate variation of outcome in one subgoup
 - Ex 1: no CLD+ for no ureaplasms found
 - Ex 2: only "infections" for diaphragm users
 - Ex 3: no deaths for G=0
- Parameter estimates $\hat{\beta}$ are infinite
- Standard errors infinite
- Confidence interval [-∞, +∞] uninformative
- $\hat{\beta}$ /se -> 0

First occurrance in literature

In Cox regression:
"Monotone likelihood"

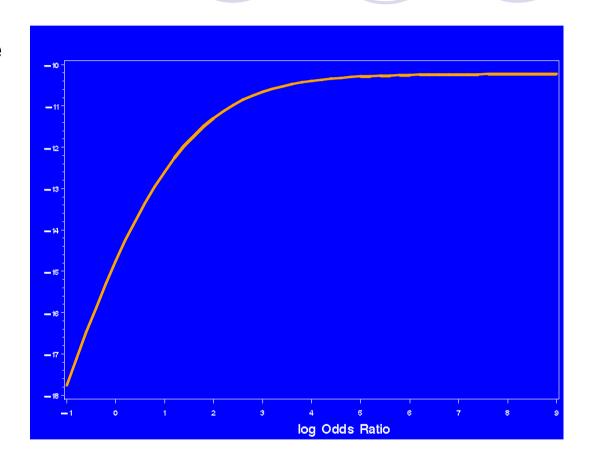
(Bryson and Johnson, Technometrics, 1981)

In logistic regression: "(Quasi-)complete Separation"

(Day and Kerridge, Biometrics 1967)

Monotone likelihood

- Likelihood is monotone
- •no finite maximizer
- Likelihood is flat
- •second derivative is 0
- variance is infinite



Incidence of monotone likelihood

High incidence if:

- Small N / heavy censoring
- Unbalanced covariates
- Large underlying effects
- Strong correlation among covariates

Options of analysis

- Omit covariate X that is causing monotone likelihood
- Stratify analysis by covariate X
- Choose different type of model
 - Transform X (e.g. use quasi-metric scaling instead of dummies)
 - Use additive risk model instead of multiplicative risk model
- Ad hoc data adjustment
 - Haldane: add ½ to each cell (for rx2 tables)
 - Laplace: add 1 to each cell (for rx2 tables)
 - Clogg et al, JASA 1991: generalized data adjustment
- Exact logistic regression (LogXact, Cytel Software Corp.)

Why exact logistic regression?

- Should read "Exact conditional logistic regression"
- Implementations:
 - LogXact
 - SAS/PROC LOGISTIC (from V8.1 on)
- Exact: inference based on exact distribution of sufficient statistic under null hypothesis
- Conditional: eliminate nuisance parameters by conditioning on sufficient statistics
- Point estimate is not "exact", rather conditional

Exact conditional log regression

- Maximum conditional likelihood estimate (MCLE):
 - \bigcirc Pr(T=T_{obs}| β)=max!
 - Infinite if T_{obs} is largest (smallest) possible value of T
- Median unbiased estimate (MUE):
 - \bigcirc Pr(T \ge T_{obs} | β) \ge 0.5, Pr(T \le T_{obs} | β) \ge 0.5
 - MUE is defined even if MCLE is infinite
- LogXact: MUE replaces MCLE if MCLE is infinite

Exact conditional log regression

- Can even be (ab)used for estimating a Cox model:
 - Each risk set contributes a nuisance parameter that is eliminated by conditioning
 - Conditioning on risk sets improves on asymptotic Cox model, but still violates nominal significance level because of interdependence of risk sets
 - shown for exact logrank test in Heinze et al (2003)
- Problems if exact null distribution is (nearly) degenerate:
 - Conditioning on continuous covariates
 - Too many covariates, too many different levels of covariates
- If exact null distribution is degenerate:
 no estimation/inference possible

Example 4: Lung cancer

- Case-control study, 18 matched sets, 1:m matching
- Factors smoking (S), radiation (R), RxS
- Options of analysis:
 - CML (conditional maximum likelihood)
 - conditions on matched sets
 - but estimates effects S, R, RxS simultanously
 - CXL (conditional exact maximum likelihood),
 - conditions on matched sets
 - and eliminates other effects by conditioning

Example 4: Lung cancer, OR (95% ci)

Method	Radiation	Smoking	RxS
CML	1.2 (0.17, 8.5)	21 (2.6, 167)	∞ (0.0, ∞)
CXL	1.2 (0.14, 20)	20 (2.6, 859)	2.5 (0.06, ∞)

- •CXL estimate for RxS is a MUE, based on a distribution consisting of 2 possible values only (overconditioning)
- •Had the other of these two values been observed: CML estimate = - ∞, but CXL estimate = still 2.5
- •Therefore, CXL estimate and c.i. are very conservative!

A solution through bias reduction

- Firth, Biometrika 1993:
- Eliminate O(1/n)-bias from maximum likelihood parameter estimates
- Bias reduction is applied while estimating the parameter estimates:

bias preventing, not bias correcting

Maximize a penalized likelihood:

 $logL^* = logL + \frac{1}{2} log det (I)$

with I denoting Fisher information matrix

A solution through bias reduction (2)

- Firth's paper remained undiscovered for 8 years
- Application to log reg and Cox reg possible (Heinze and Schemper, 2001, 2002)
- We showed that parameter estimates are always finite
- Small-sample bias is greatly reduced

Penalized maximum likelihood estimation

- Penalisation by ½ log det(I) is like adding pseudoobservations with total weight k to the data
- Log Reg: each observation (x_i, y_i) is splitted into two new observations:
 - A: Outcome y_i, weight 1+h_i/2
 - B: Outcome 1-y_i, weight h_i/2
 - h_i are diagonal elements of hat matrix H (leverages)
 - $\bigcirc \Sigma h_i = k; \quad 0 \le h \le 1$
 - Balance of pseudo-observations guarantees finite estimates
- Weighting of pseudo-observations is done iteratively during estimation

Inference

- Standard errors deduced from second derivative of log L (rather than log L*)
- Although penalized likelihood has maximum, its shape is very asymmetric in case of monotone likelihood
- Normal approximation unsuitable
- Better: Profile penalized likelihood confidence intervals, penalized likelihood ratio tests

Profile penalized likelihood

Likelihood ratio statistic

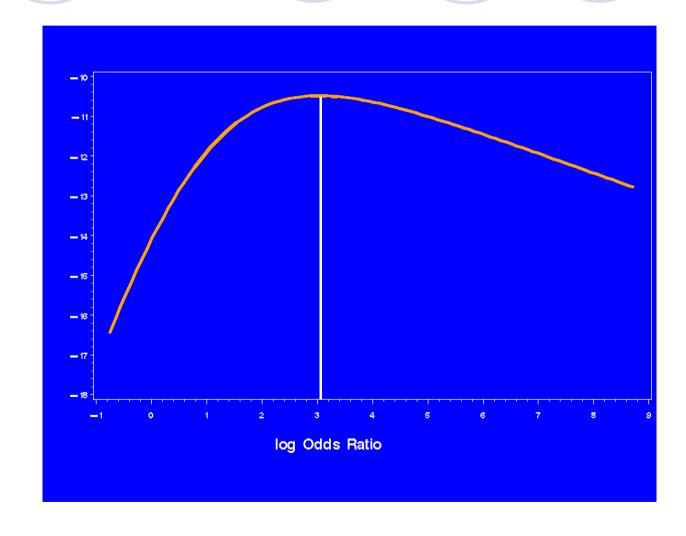
$$LR(\hat{\gamma}, \gamma_0) = 2 \left\{ \log L(\hat{\gamma}, \hat{\delta})^* - \log L(\gamma_0, \hat{\delta}_{\gamma_0})^* \right\}$$

- Under H_0 : $\gamma = \gamma_0$, LR ~ χ^2
- 95% confidence interval: set of values γ_0 for which LR< $\chi^2_{1:0.95}$

Example 1: Preterm infants

OR (95% CI):

20.8 (2.1 – 2017) p=0.007



Example 2: Urinary tract infection

	OR estimate	
Factor	ML	PML
Age	3.2	3.0
Oral contraceptives	0.9	0.9
Condom use	11.1	9.7
Lubricated condom	0.1	0.1
Spermicide use	0.4	0.5
Diaphragm use	INF	22.1

Example 3: Breast cancer

	ML RR (95% CI)	Р	PML RR (95% CI)	Р
рТ	3.6 (1.3 – 9.6)	0.01	3.4 (1.4 – 9.5)	0.01
N	2.6 (1.1 – 5.9)	0.03	2.5 (1.1 – 5.8)	0.03
G	$248054 \\ (0 - 2 \times 10^{188})$	0.95	11.3 (1.5 – 1452)	0.01
CD	1.5 (0.6 – 3.6)	0.37	1.5 (0.6 – 3.5)	0.36

Example 4: Lung cancer, OR (95% ci)

Method	Radiation	Smoking	RxS
	(main effect)	(main effect)	
CML	1.2 (0.17, 8.5)	21 (2.6, 167)	∞ (0.0, ∞)
CXL	1.2 (0.14, 20)	20 (2.6, 859)	2.5 (0.06, ∞)
CPML	0.99 (0.2, 3.1)	14 (3.1, 128)	11 (0.4, 1800)

Our approach can easily be adopted to CML log reg

Example 5: Childhood leukemia matched-pairs study

Ebi et al, Epidemiology 1999; Greenland, 2000

Case: house with an index case of leukemia

Control: reflection of case house across the street

Exposure: backyard power line (3-phase, secondary, none)

 Standard analysis via conditional maximum likelihood (CML) log reg

Example 5: Childhood leukemia matched-pairs study

	Control exposure		
Case	Three-phase Secondary		None
exposure			
Three-phase	15	24	11
Secondary	11	107	9
None	0	1	81

Example 5: Childhood leukemia matched-pairs study

 No separation, but sparse data: CML expected to be biased away from 0

	,	OR (95% CI)	
Method		Three-phase vs none	Secondary vs none
	CML	32 (4.0, 0.253)	14 (1.8, 107)
	CXL	30 (4.5, 1328)	14 (2.1, 507)
	CPML	21 (3.7, 124)	9.6 (2.4, 87)
	Haldane (add ½ to cells)	16 (3.5, 78)	7.4 (1.6, 34)
	Laplace (add 1 to cells)	11 (2.9, 43)	5.2 (1.4, 19)
		I	

CML: conditional ML; CXL: conditional exact ML;

CPML: conditional penalized ML

Penalized likelihood/bias reduction

- log L* = log L + c log det (I)
- Jeffreys prior: $c = \frac{1}{2}$, removes O(1/n) bias
 - shrinks parameter estimates toward the point of minimum variance
 - shrinkage not equal for each parameter
- c > $\frac{1}{2}$: reduces bias on exp(β) scale, but introduces negative bias on estimate of β (Greenland, 2000)
 - c=1: generalization of Laplace ad-hoc estimator

Comments on bias reduction

- Firth: O(n⁻¹)-bias reduction
 - Optimal to reduce bias and MSE
- Should we try to obtain higher-order bias reduction?
 - MSE=bias² + variance
 - bias smaller, but variance greater => MSE worse

Bias reduction if n/k is small

- Since estimates exist in each and every situation, we are seduced to analyze samples with very small n and very large k
- Watch out! Firth's bias reduction overcorrects bias if n/k is small
- This means, a negative bias (bias towards zero) is introduced
- Overcorrection becomes severe (effects are halvened)
 if y is unbalanced AND n/k is small

Why the overcorrection?

- Bias reduction implicitely estimates bias b(β) replacing β by its estimate
- If estimate is inconsistent, approximation fails (Leung and Wang, 1998)
- Common to all bias correcting approaches that need to estimate the bias
- Pseudo-observations obtain to much weight (k compared to n)

Bias reduction if n/k is small (2)

- Smaller amount of correction necessary
- Maximize Log L* = log L + c log det (I) with c < ½</p>
- Optimization of c via simulation (?)
- Or switch to ridge regression (leCessie and Van Houwelingen, 1992)

Penalized likelihood: ridge regression

- leCessie and Van Houwelingen, JRSS C 1992:
- Log L * = $\log L \lambda ||\beta||^2$
 - $||\beta||^2 = (\sum \beta_i^2)^{1/2}$
 - λ optimized to yield small prediction error
 - Shrinks parameter estimates towards 0
 - Can be used to apply restrictions on estimation, e.g.
 - Smooth transitions of parameter estimates corresponding to neighbouring categories
 - Smooth transitions of hazards in piecewise exponential models
 - Purpose: primarily for prediction, not for estimation of parameter estimates
 - In case of separation, produces finite estimates

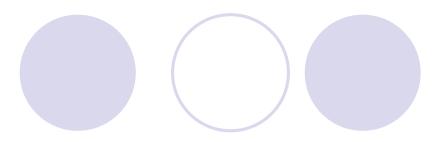
Model comparison with penalized maximum likelihood

- Comparison of models is difficult:
 - Hierarchical models: use penalization term of larger model
 - Model 1: y=A+B+C
 - Model 2: y=A+B
 - Log L1* := log L(A,B,C) + ½ log det I(A,B,C)
 - Log L2* := log L(A,B,C) + $\frac{1}{2}$ log det I(A,B,C) with β_C =0
 - Please note that in this comparison, Log L2* :≠ log L(A,B) + ½ log det I(A,B) !!!
 - That's how inference is performed in our programs

Model comparison (2)

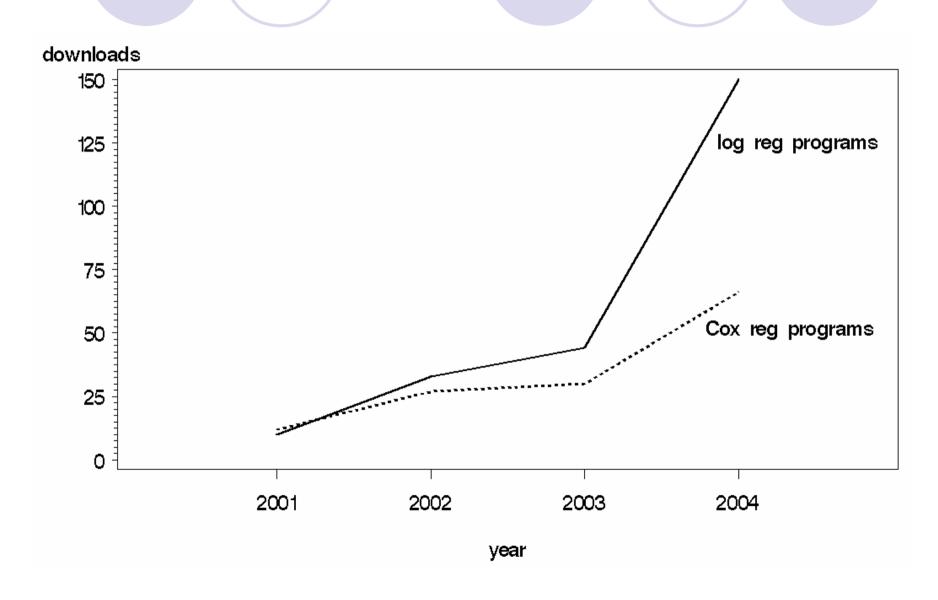
- Non-hierarchical model comparison
 - Model 1: y=A+B+C
 - Model 2: y=A+B+D
- Penalized likelihoods cannot be compared, because the structure of penalization term
 log det (I) is not comparable
- Comparison via some information criterion (DIC? BIC?)
- Still an open issue

Software



- Cox regression
 - SAS macro **FC** (Heinze and Ploner, 2002)
 - SPLUS function coxphf (Heinze and Ploner, 2002)
 - New SAS macro FGCSS (time-dependent variables/effects, counting process style, stratified analysis)
 - All based on FORTRAN
- Logistic regression
 - SAS macro FL (Heinze and Ploner, 2003)
 - SPLUS function logistf (Heinze and Ploner, 2003)
 - R package logistf (Heinze and Ploner, 2004)
 - R package brlr (by D. Firth)
 - Conditional logistic regression:
 - 1:1 matching: FL/logistf, suppress estimation of intercept
 - 1:m matching: FGCSS

Software: registered downloads



Conclusions

- Penalized likelihood approach removes the problem of reporting infinite odds/risk ratios
- PPL confidence intervals account properly for assymetry of likelihood
- PML estimates have smaller bias than ML estimates
- PPL confidence intervals have better coverage than PL or Wald ci
- Approach works, better than others, for all normal problems
- Software is available, have a look at
 - www.muw.ac.at/msi/biometrie/programme/fl
 - www.muw.ac.at/msi/biometrie/programme/fc

References

- Day and Kerridge (Biometrics 1967). A general maximum likelihood discriminant.
- Bryson and Johnson (Technometrics 1981). The incidence of monotone likelihood in Cox regression.
- Clogg, Rubin, Schenker, Schultz and Weidman (J Am Stat Assoc 1991). Multiple imputation of industry and occupation codes in census public-use samples using Bayesian logistic regression.
- Le Cessie and van Houwelingen (Applied Statistics 1992). Ridge estimators in logistic regression.
- Firth (Biometrika 1993). Bias reduction of maximum likelihood estimates.
- Leung and Wang (Austr New Zeal Journal of Statistics 1998). Bias reduction using stochastic approximation.
- Greenland (Biostatistics 2000). Small-sample bias and corrections for conditional maximumlikelihood odds-ratio estimators.
- Heinze and Schemper (Biometrics 2001). A solution to the problem of monotone likelihood in Cox regression.
- Heinze and Schemper (Statistics in Medicine 2002). A solution to the problem of separation in logistic regression.
- Heinze and Ploner (Comp Meth Prog Biomed 2002). SAS and SPLUS programs to perform Cox regression without convergence problems.
- Heinze, Gnant and Schemper (Biometrics 2003). Exact logrank tests for unequal follow-up.
- Heinze and Ploner (Comp Meth Prog Biomed 2003). Fixing the nonconvergence bug in logistic regression using SPLUS and SAS.
- Heinze and Ploner (TechRep, 2004). A SAS macro, SPLUS library and R package to perform logistic regression without convergence problems. http://www.meduniwien.ac.at/msi/biometrie/programme/fl/tr2 2004.pdf