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Example 1: Preterm infants

From: Berger et al, J Perinat Med, 2003

417
Ureaplasma 
urealyticum found

040
No amniotic cavity
culture found

CLDNo CLDGroup

OR estimate:          4/0 / 40/17 = infinite



Example 2: Urinary tract infection

From: Foxman et al, Epidemiology, 1997

70Diaphragm use

123109No diaphragm use
InfectionNo infectionGroup

Other variables in the model:

Age, use of condoms, use of lubricated condoms, use of 
spermicides, oral contraceptives



Example 2: Urinary tract infection

OR estimates of diaphragm use obtained by glm of SPLUS:
Convergence criterion is change in deviance

Criterion Estimate Lower Upper P-value
0.001 220 0.8 6.5e5 0.06
0.0001 1726 4e-4 6.8e9 0.34
0.00001 34774 <1e-4 1.1e34 0.76



Example 3: Breast cancer

From Lösch et al, Brit J Cancer, 1998
Survival of 100 patients, 74 censored
4 risk factors (pT, N, G, CD)
Analysis via Cox regression:

0.371.5 (0.6 – 3.6)CD
0.95248054 (0 – 2 x 10188)G
0.032.6 (1.1 – 5.9)N
0.013.6 (1.3 – 9.6)pT

P-valueRR (95% c.i.)Faktor



Common to examples 1-3:

Degenate variation of outcome in one subgoup
Ex 1: no CLD+ for no ureaplasms found
Ex 2: only „infections“ for diaphragm users
Ex 3: no deaths for G=0

Parameter estimates are infinite
Standard errors infinite
Confidence interval [-∞, +∞] uninformative

/se -> 0

β̂

β̂



First occurrance in literature

In Cox regression:
„Monotone likelihood“

(Bryson and Johnson, Technometrics, 1981)

In logistic regression: 
„(Quasi-)complete Separation“
(Day and Kerridge, Biometrics 1967)



Monotone likelihood

•Likelihood is monotone
•no finite maximizer

•Likelihood is flat
•second derivative is 0
•variance is infinite



Incidence of monotone likelihood

High incidence if:

Small N / heavy censoring

Unbalanced covariates

Large underlying effects

Strong correlation among covariates



Options of analysis

Omit covariate X that is causing monotone likelihood

Stratify analysis by covariate X

Choose different type of model
Transform X (e.g. use quasi-metric scaling instead of dummies)
Use additive risk model instead of multiplicative risk model

Ad hoc data adjustment
Haldane: add ½ to each cell (for rx2 tables)
Laplace: add 1 to each cell (for rx2 tables)
Clogg et al, JASA 1991: generalized data adjustment

Exact logistic regression (LogXact, Cytel Software Corp.)



Why exact logistic regression?

Should read
„Exact conditional logistic regression“

Implementations:
LogXact
SAS/PROC LOGISTIC (from V8.1 on)

Exact: inference based on exact distribution of sufficient statistic
under null hypothesis

Conditional: eliminate nuisance parameters by conditioning on 
sufficient statistics

Point estimate is not „exact“, rather conditional



Exact conditional log regression

Maximum conditional likelihood estimate (MCLE):
Pr(T=Tobs|β)=max!
Infinite if Tobs is largest (smallest) possible value of T

Median unbiased estimate (MUE):
Pr(T≥Tobs | β) ≥ 0.5, Pr(T≤Tobs | β) ≥ 0.5
MUE is defined even if MCLE is infinite

LogXact: MUE replaces MCLE if MCLE is infinite



Exact conditional log regression

Can even be (ab)used for estimating a Cox model:
Each risk set contributes a nuisance parameter that is eliminated
by conditioning
Conditioning on risk sets improves on asymptotic Cox model, but
still violates nominal significance level because of 
interdependence of risk sets
shown for exact logrank test in Heinze et al (2003)

Problems if exact null distribution is (nearly) degenerate:
Conditioning on continuous covariates
Too many covariates, too many different levels of covariates

If exact null distribution is degenerate:
no estimation/inference possible



Example 4: Lung cancer

Case-control study, 18 matched sets, 1:m 
matching
Factors smoking (S), radiation (R), RxS

Options of analysis: 
CML (conditional maximum likelihood)

conditions on matched sets
but estimates effects S, R, RxS simultanously

CXL (conditional exact maximum likelihood), 
conditions on matched sets
and eliminates other effects by conditioning



Example 4: Lung cancer, OR (95% ci)

2.5 (0.06, ∞)20 (2.6, 859)1.2 (0.14, 20)CXL

∞ (0.0, ∞)21 (2.6, 167) 1.2 (0.17, 8.5)CML

RxSSmokingRadiationMethod

•CXL estimate for RxS is a MUE, 
based on a distribution consisting of 2 possible values only

(overconditioning)

•Had the other of these two values been observed:
CML estimate = - ∞, 
but CXL estimate = still 2.5

•Therefore, CXL estimate and c.i. are very conservative!



A solution through bias reduction

Firth, Biometrika 1993:
Eliminate O(1/n)-bias from maximum likelihood
parameter estimates

Bias reduction is applied while estimating the parameter
estimates:

bias preventing, not bias correcting

Maximize a penalized likelihood:
logL* = logL + ½ log det (I)

with I denoting Fisher information matrix



A solution through bias reduction (2)

Firth‘s paper remained undiscovered for 8 years

Application to log reg and Cox reg possible
(Heinze and Schemper, 2001, 2002)

We showed that parameter estimates are always
finite
Small-sample bias is greatly reduced



Penalized maximum likelihood estimation

Penalisation by ½ log det(I) is like adding pseudo-
observations with total weight k to the data

Log Reg: each observation (xi, yi) is splitted into two new
observations:

A: Outcome yi, weight 1+hi/2
B: Outcome 1-yi, weight hi/2
hi are diagonal elements of hat matrix H (leverages) 
Σhi = k;    0 ≤ h ≤ 1
Balance of pseudo-observations guarantees finite estimates

Weighting of pseudo-observations is done iteratively
during estimation



Inference

Standard errors deduced from second derivative of log L (rather
than log L*)

Although penalized likelihood has maximum, its shape is very
asymmetric in case of monotone likelihood

Normal approximation unsuitable

Better: Profile penalized likelihood confidence intervals, penalized
likelihood ratio tests



Profile penalized likelihood

Likelihood ratio statistic

Under H0: γ = γ0 , LR ~ χ2

95% confidence interval: 
set of values γ0 for which LR< χ2

1;0.95
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Example 1: Preterm infants

OR (95% CI):

20.8
(2.1 – 2017) 
p=0.007



Example 2: Urinary tract infection

PMLMLFactor
3.03.2Age
0.90.9Oral contraceptives
9.711.1Condom use
0.10.1Lubricated condom
0.50.4Spermicide use

22.1INFDiaphragm use

OR estimate



Example 3: Breast cancer

1.5 (0.6 – 3.5)

11.3 (1.5 – 1452)

2.5 (1.1 – 5.8)

3.4 (1.4 – 9.5)

PML RR (95% CI)

0.36

0.01

0.03

0.01

P

1.5 (0.6 – 3.6)

248054 
(0 – 2 x 10188)

2.6 (1.1 – 5.9)

3.6 (1.3 – 9.6)

ML RR (95% CI)

0.37

0.95

0.03

0.01

P

CD

G

N

pT



Example 4: Lung cancer, OR (95% ci)

11 (0.4, 1800)14 (3.1, 128)0.99 (0.2, 3.1)CPML

2.5 (0.06, ∞)20 (2.6, 859)1.2 (0.14, 20)CXL

∞ (0.0, ∞)21 (2.6, 167) 1.2 (0.17, 8.5)CML

RxSSmoking 
(main effect)

Radiation
(main effect)

Method

Our approach can easily be adopted to CML log reg



Example 5: Childhood leukemia
matched-pairs study

Ebi et al, Epidemiology 1999; Greenland, 2000

Case: house with an index case of 
leukemia

Control: reflection of case house
across the street

Exposure: backyard power line
(3-phase, secondary, none)

Standard analysis via conditional maximum likelihood
(CML) log reg



Example 5: Childhood leukemia
matched-pairs study

8110None

910711Secondary

112415Three-phase

NoneSecondaryThree-phase

Control exposure
Case
exposure



Example 5: Childhood leukemia
matched-pairs study

No separation, but sparse data: CML expected to be biased
away from 0

Secondary vs noneThree-phase vs noneMethod

14 (1.8, 107)32 (4.0, 0.253)CML

14 (2.1, 507)30 (4.5, 1328)CXL

9.6 (2.4, 87)21 (3.7, 124)CPML

7.4 (1.6, 34)16 (3.5, 78)Haldane (add ½ to cells)

5.2 (1.4, 19)11 (2.9, 43)Laplace (add 1 to cells)

OR (95% CI)

CML: conditional ML; CXL: conditional exact ML; 
CPML: conditional penalized ML



Penalized likelihood/bias reduction

log L* = log L + c log det (I)
Jeffreys prior: c = ½, removes O(1/n) bias

shrinks parameter estimates toward the point of minimum
variance
shrinkage not equal for each parameter

c > ½: reduces bias on exp(β) scale, but introduces negative 
bias on estimate of β (Greenland, 2000)

c=1: generalization of Laplace ad-hoc estimator



Comments on bias reduction

Firth: O(n-1)-bias reduction
Optimal to reduce bias and MSE

Should we try to obtain higher-order bias
reduction?

MSE=bias2  + variance
bias smaller, but variance greater => MSE worse



Bias reduction if n/k is small

Since estimates exist in each and every situation, we
are seduced to analyze samples with very small n and 
very large k

Watch out! Firth‘s bias reduction overcorrects bias if n/k 
is small

This means, a negative bias (bias towards zero) is
introduced

Overcorrection becomes severe (effects are halvened)
if y is unbalanced AND n/k is small



Why the overcorrection?

Bias reduction implicitely estimates bias b(β) 
replacing β by its estimate

If estimate is inconsistent, approximation fails
(Leung and Wang, 1998)

Common to all bias correcting approaches that
need to estimate the bias

Pseudo-observations obtain to much weight (k 
compared to n)



Bias reduction if n/k is small (2)

Smaller amount of correction necessary

Maximize Log L* = log L + c log det (I) with c < ½

Optimization of c via simulation (?)

Or switch to ridge regression (leCessie and Van 
Houwelingen, 1992)



Penalized likelihood: ridge regression

leCessie and Van Houwelingen, JRSS C 1992:
Log L * = log L – λ ||β||2

||β||2 = (Σ βj
2)1/2

λ optimized to yield small prediction error
Shrinks parameter estimates towards 0
Can be used to apply restrictions on estimation, e.g.

Smooth transitions of parameter estimates corresponding to 
neighbouring categories
Smooth transitions of hazards in piecewise exponential models

Purpose: primarily for prediction, not for estimation of parameter
estimates
In case of separation, produces finite estimates



Model comparison with penalized
maximum likelihood

Comparison of models is difficult:
Hierarchical models: use penalization term of larger 
model

Model 1: y=A+B+C
Model 2: y=A+B

Log L1* := log L(A,B,C) + ½ log det I(A,B,C) 
Log L2* := log L(A,B,C) + ½ log det I(A,B,C) with βC=0

Please note that in this comparison,
Log L2* :≠ log L(A,B) + ½ log det I(A,B) !!!

That‘s how inference is performed in our programs



Model comparison (2)

Non-hierarchical model comparison
Model 1: y=A+B+C
Model 2: y=A+B+D

Penalized likelihoods cannot be compared, because the
structure of penalization term
½ log det (I) is not comparable

Comparison via some information criterion (DIC? BIC?)

Still an open issue



Software

Cox regression
SAS macro FC (Heinze and Ploner, 2002)
SPLUS function coxphf (Heinze and Ploner, 2002)
New SAS macro FGCSS (time-dependent variables/effects, counting
process style, stratified analysis)
All based on FORTRAN

Logistic regression
SAS macro FL (Heinze and Ploner, 2003)
SPLUS function logistf (Heinze and Ploner, 2003)
R package logistf (Heinze and Ploner, 2004)
R package brlr (by D. Firth)

Conditional logistic regression:
1:1 matching: FL/logistf, suppress estimation of intercept
1:m matching: FGCSS



Software: registered downloads



Conclusions

Penalized likelihood approach removes the problem of reporting
infinite odds/risk ratios

PPL confidence intervals account properly for assymetry of 
likelihood

PML estimates have smaller bias than ML estimates
PPL confidence intervals have better coverage than PL or Wald ci

Approach works, better than others, for all normal problems

Software is available, have a look at 
www.muw.ac.at/msi/biometrie/programme/fl
www.muw.ac.at/msi/biometrie/programme/fc
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