
3 Parameter estimation - maximum likelihood

method

3.1 Estimation of the proportion

Let x1, . . . xn be independent realizations of a Bernoulli distributed random
variable X. We wish to estimate the parameter p.

• Say that n = 5 and that we got the following 5 values: 1, 0, 1, 1, 1. What
would be the probability of this event if p = 0.2? What if p = 0.75?
Plot the curve of these probabilities for various values of p. How would
you calculate its peak?

The probability of this event can be calculated as 0.240.81, or, in gen-
eral pk(1 − p)n−k, where k is the number of 1s. Denote the event
A = {X1 = 1, X2 = 0, X3 = 1, X4 = 1, X5 = 1}. For p = 0.2, we have
P (A) = 0.00128, for p = 0.75, we have P (A) = 0.079. Plot the curve
of probabilities for values of p between 0 and 1:
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Figure 1: The probability of observed event for a given p.

The peak of this function can be found by derivation - we take the
derivative of pk(1− p)n−k by p and equal it to 0 (local maximum).
In our case, the function peaks at p = 4/5.

• The data obtained on a sample are denoted as x1, . . . , xn (in the above
case, n = 5, x1 = 1 in x2 = 0). Write the value of P (Xi = xi|p), i.e.
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the probability that the event, we have seen, has happened. Write the
likelihood function.

P (Xi = xi|p) = pxi(1− p)1−xi

The likelihood function is a product of probabilities (we’ve assumed
that the random variables Xi are independent), therefore

L(p, x) = P (X1 = x1, . . . , Xn = xn|p) =
n∏

i=1

pxi(1− p)1−xi

= p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi

• Find the estimator of p using the maximum likelihood method

Since logarithm is a monotone function, the maximum of the logarithm
shall be at the same point as the maximum of the function itself:

logL(p, x) =
n∑

i=1

xi log(p) + (n−
n∑

i=1

xi) log(1− p)

∂ logL(p, x)

∂p
=

∑n
i=1 xi
p

− n−
∑n

i=1 xi
1− p

=

∑n
i=1 xi − p

∑n
i=1 xi − p(n−

∑n
i=1 xi)

p(1− p)

=

∑n
i=1 xi − pn
p(1− p)

The derivative of the logarithm equals 0 for p̂n =
∑n

i=1 xi. The max-
imum likelihood estimate equals p̂ = 1

n

∑n
i=1 xi. This is the sample

proportion.

• Is this estimate unbiased?

The maximum likelihood method ensures only consistency (unbiased-
ness, when n→∞), in our case, we get

E(p̂) = E(
1

n

n∑
i=1

xi) =
1

n

n∑
i=1

E(xi) =
1

n

n∑
i=1

p = p
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We see that our estimator is unbiased.

• How can you estimate the standard error?

The variance of the estimator equals 1
n
I(p)−1, where

I(p) = −E
[
∂2

∂p2
log(f(X, p))

]
= E

[
∂

∂p
log(f(X, p))

]2
Since both formulae give equally complex calculation in our case, we
use the first one:

f(X|p) = pX(1− p)1−X

I(p) = −E
[
∂2

∂p2
log(f(X|p))

]
= −E

[
∂2

∂p2
(X log p+ (1−X) log(1− p))

]
= −E

[
∂

∂p

(
X

p
− 1−X

1− p

)]
= −E

[
∂

∂p

(
(1− p)X − (1−X)p

p(1− p)

)]
= −E

[
∂

∂p

(
X − p
p(1− p)

)]
= −E

[
p(1− p)(−1)− (1− 2p)(X − p)

p2(1− p)2

]
= −E

[
−p+ p2 −X + 2pX + p− 2p2

p2(1− p)2

]
= −E

[
−p2 −X + 2pX

p2(1− p)2

]

When calculating the expected value, we use that E(X) = p. Since X
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only appears in the numerator, we get

I(p) = −E
[
−p2 −X + 2pX

p2(1− p)2

]
= −

[
−p+ p2

p2(1− p)2

]
=

1

p(1− p)

• We wish to estimate the proportion of voters for a certain candidate.
In a sample of n = 500, he gets 29 % of the votes. Give the 95 %
confidence interval for this estimate.

The sample estimate equals p̂ = 0.29. Standard error (i.e. the standard
deviation of the estimator) on the sample can be estimated using p̂, we
get

ŜE =

√
1

nI(p̂)
=

√
p̂(1− p̂)

n
= 0.02.

As we know from the theory, the p−p̂

ŜE
is approximately normally dis-

tributed. The 95 % confidence interval equals [0, 25, 0, 33].

Understanding the ideas in R:

• Use R to plot the Figure 1:

> p <- seq(0,1,length=100) #for 100 values p between 0 in 1

> y <- p^4*(1-p) #calculate the probability for each value

> plot(p,y,type="l") #plot them as a curve

• Generate a sample of size 500, in which every individual has the prob-
ability 0.3 to vote for a certain candidate. Estimate the probability
using the sample proportion. Repeat this procedure 1000x and look at
the distribution of sample estimates.

• Add the estimated 95% confidence interval for each sample. What is
the proportion of the samples, on which the interval encompasses the
true value (0.3)?
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3.2 The association of two random variables

We wish to know, how the revenue of a company in a certain branch depends
on the number of employees. Assume that the income is randomly distributed
with the average β0 + β1X, where X is the logarithm of the number of
employees. Say that we have data on a sample of companies and would like
to estimate the parameters β0 and β1.

• What is the density of the company revenues if we know the variance
equals σ2?

We assume that Y ∼ N(β0 + β1X, σ
2), therefore

f(Y,X|β0, β1, σ) =
1√
2πσ

e−
(Y−β0−β1X)2

2σ2

• Write the likelihood function. What is the function to maximize?

We have the data (xi, yi), i = 1, . . . , n.

L(y, x, β0, β1, σ) =
n∏

i=1

1√
2πσ

e−
(yi−β0−β1xi)

2

2σ2

=
1

(
√

2πσ)n
e−

∑n
i=1(yi−β0−β1xi)

2

2σ2

The logarithm of this function equal

logL(y, x, β0, β1, σ) = −n
2

log(2πσ2)−
∑n

i=1(yi − β0 − β1xi)2

2σ2

Since we are only interested in the parameters β0 in β1, the first part of
the function can be seen as the constant and we only need to maximize
the expression

−
n∑

i=1

(yi − β0 − β1xi)2

• Estimate β0 and β1 using the maximum likelihood method

First for β0:
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∂

∂β0

n∑
i=1

(yi − β0 − β1xi)2

= −2
n∑

i=1

(yi − β0 − β1xi)

Equalling the above expression to 0, we get (the two values of β0 and
β1 for which the term equals 0 are denoted with a hat)

−2

(
n∑

i=1

yi − nβ̂0 − β̂1
n∑

i=1

xi

)
= 0

β̂0 =
1

n

(
n∑

i=1

yi − β̂1
n∑

i=1

xi

)
We now take the derivative with respect to β1:

∂

∂β1

n∑
i=1

(yi − β0 − β1xi)2

= −2
n∑

i=1

xi (yi − β0 − β1xi)

= −2

(
n∑

i=1

xiyi − β0
n∑

i=1

xi − β1
n∑

i=1

x2i

)

If the above expression equals 0, we get

β̂1 =

n∑
i=1

xiyi − β̂0
n∑

i=1

xi

n∑
i=1

x2i

Combining the two expressions (after a bit of algebra), we get

β̂1 =

n
n∑

i=1

xiyi −
n∑

i=1

xi
n∑

i=1

yi

n
n∑

i=1

x2i − (
n∑

i=1

xi)2
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β̂0 =

n∑
i=1

x2i
n∑

i=1

yi −
n∑

i=1

xi
n∑

i=1

xiyi

n
n∑

i=1

x2i − (
n∑

i=1

xi)2

• Calculate the standard error of both estimates.

We have to calculate the second derivatives needed for the Fisher in-
formation matrix. The logarithm of the likelihood function equals

log f(Y,X|β0, β1, σ) = −1

2
log(2πσ2)− (Y − β0 − β1X)2

2σ2

The first derivatives equal

∂

∂β0
log f(Y,X|β0, β1, σ) =

1

σ2
(Y − β0 − β1X)

∂

∂β1
log f(Y,X|β0, β1, σ) =

X

σ2
(Y − β0 − β1X)

The second derivatives equal

∂2

∂β2
0

log f(Y,X|β0, β1, σ) = − 1

σ2

∂2

∂β2
1

log f(Y,X|β0, β1, σ) = −X
2

σ2

∂2

∂β1β0
log f(Y,X|β0, β1, σ) = −X

σ2

The terms in the Fisher information matrix are the negative expected
values of the second derivatives. Since we do not know the expected
value of X or X2, we estimate them from the data:

I(β0, β1) =
1

σ2

1 x̄

x̄ 1
n

n∑
i=1

x2i


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The inverse of the matrix then equals

I−1(β0, β1) =
σ2

1
n

n∑
i=1

x2i − x̄2

 1
n

n∑
i=1

x2i −x̄

−x̄ 1


and hence

var(β̂0) =
I−1
11

n
=

1

n

σ2 1
n

n∑
i=1

x2i

1
n

n∑
i=1

x2i − x̄2

=

σ2
n∑

i=1

x2i

n
n∑

i=1

x2i − (
n∑

i=1

xi)2

and

var(β̂1) =
I−1
22

n
=

1

n

σ2

1
n

n∑
i=1

x2i − x̄2

=
nσ2

n
n∑

i=1

x2i − (
n∑

i=1

xi)2
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