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Abstract

With changing the age distribution at the time of cancer diagnosis,

the administrative censoring due to study end may be informative. This

problem has been mentioned frequently in the relative survival field, and

an estimator aiming to correct this problem has been developed. In this

paper, existing methods for estimation in relative survival are reviewed,

their deficiencies are demonstrated and weighting to correct both the re-

cently introduced net survival estimator and the Ederer I estimator is

proposed. Using simulations and real cancer registry data, the magnitude

of the informative censoring problem is evaluated. The assumptions be-

hind the reviewed methods are clarified and guidance to their usage in

practice is provided.

Keywords: relative survival ratio; net survival; informative censoring;

inverse probability weighting
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1 Introduction

Survival analysis of data with long-term follow-up is often faced with the issue

of competing risks: many deaths occur due to causes other than the disease of

interest, so that the overall survival is not particularly informative. Although

crucial information would be provided by the cause of death, it is often unre-

liable or even unavailable. A prominent example is given by data from cancer

registries. The methodology developed for such data, named relative survival, is

based on the assumption that the hazard of causes other than the disease under

study can be obtained from the general-population mortality tables.

One of the main goals of the analysis of cancer registry data is to compare cancer

burden in different calendar periods or different subpopulations without being

affected by the differences in the general population mortality trends. Therefore,

the focus of the analysis is usually not on competing risks probabilities but

rather on the estimation of net survival, defined as the survival probability in

a hypothetical world where patients could only die of cancer. Estimation of

this probability requires strong non-testable assumptions and the interpretation

of the measure as ‘what would happen if patients could only die of cancer’ is

not really of interest. Nevertheless, unlike in the usual competing risks setting

where such functionals are avoided (see e.g. [1]), net survival is a key measure

in the relative survival field, since it is the only quantity independent of the

population mortality and thus directly inter-comparable. In addition, the net

survival curves graphically accompany the excess hazards models [2, 3, 4, 5].

Another quantity of interest is the relative survival ratio defined as the ratio of

the actual observed survival of the patients, and the survival of their population

counterparts. In fact, the net survival and the relative survival ratio were until

recently thought to be the same quantity, with the ratio of the observed survival

and the population survival serving as the estimator of the net survival [6].

As it turns out, the two quantities can in fact differ considerably in practice.

While the the ratio has the advantage of a clear interpretation in the real world,

it is usually less desirable than net survival due to its strong dependence on

the population mortality trends. Despite the common use of the net survival

concept, the fact that it is not a real world measure must be kept in mind at all

times and we try to stress this also by clearly separating the two topics in the

manuscript.
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A further complication of the cancer registry data, mentioned already by Haku-

linen [7], is the fact that if the calendar time frame in which the patients are

recruited is wide, their covariate distribution at diagnosis date may vary con-

siderably. As a consequence, administrative censoring at the end of the study

is informative, with some subgroups of patients having a higher probability of

getting censored than others [8]. An example is the age of the patients, with

the ageing general population, the mean age of diagnosed patients is increas-

ing, which in turn implies that with the study closing at the same time for all

the patients, the patients who have a shorter maximum potential follow-up are

more likely to be older. Valid inference of all basic survival estimators (e.g.

Kaplan-Meier) is provided under the assumption that censoring times must be

independent of survival times in the sense that the censoring mechanism keeps

the risk set representative for what it would have been without censoring [9].

In our case, this assumption is violated since the censored individuals have a

higher hazard of dying as those who remain under follow-up, we refer to this

issue as the problem of informative censoring.

The goal of this paper is to find a solution for the problem of informative censor-

ing and evaluate it in practice. In Section 2, we review the existing estimators

of relative survival ratio and net survival. A study of the current solution to

the problem and a proposal of a new approach is presented in Section 3. The

performance of the estimators and their corrections is explored with simulations

in Section 4. In Section 5 the assumptions posed by different approaches to es-

timating survival are discussed and their performance in practice is evaluated

in Section 6. The paper is concluded with Section 7.

2 Estimation of relative survival ratio and net

survival

The idea of the relative survival field is to use two data sets - the observed data

on patients and the general population mortality data of the relevant country

or region. The observed data for i-th patient comprise the time of follow-

up Ti (i = 1, . . . , n, where n denotes the total number of patients) and the

censoring indicator δi (δi = 1 if the follow-up for i-th patient ended in death

and 0 otherwise), time of cancer diagnosis is taken as the time origin (time 0).

Using this information, we define the at risk indicator Yi(t) for each individual
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(Yi(t) = 1 if Ti ≥ t and 0 otherwise) and the number of events at each time

point dNi(t) (dNi(t) = 1 if Ti = t, δi = 1 and 0 otherwise). The hazard function

that generates these data is referred to as the observed hazard

λO(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t
.

Additionally, a vector Zi of several covariates might be available. The subgroup

Di of these covariates that are used in the population mortality tables and

referred to as demographic variables typically includes age, sex and calendar

year and sometimes also race or deprivation factor. The population mortality

tables provide the conditional probability of dying within next year (conditional

on still being alive at the beginning of the year) for every combination of the

demographic variables. We use the population mortality tables to calculate the

population hazard λPi for an individual with demographic covariates Di. We

denote the hazard of dying due to cancer as λEi (excess hazard) and assume

that λPi describes well the hazard of dying due to all other causes. The observed

hazard λOi is then

λOi(t) = λPi(t) + λEi(t).

We use i in the above formula to stress that the hazards may differ between

individuals and are subject to their covariate values, i.e. λPi(t) = λP (t|Di),

λEi(t) = λE(t|Zi).

2.1 Relative survival ratio

For a given population of patients, the relative survival ratio SR is defined as the

ratio of the observed survival of these patients SO and the population survival

SP of their counterparts from the general population with the same values of

the demographic covariates. The ratio can be estimated as [10]

ŜR(t) =
ŜO(t)

ŜP (t)
, (1)

where ŜO(t) is the Kaplan-Meier estimate using the observed data on patients

and ŜP (t) is calculated as the average of individual survival curves ŜP (t) =
1
n

∑n

i=1 SPi(t) calculated from the population mortality tables. The latter im-
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plies estimating the cumulative hazard function Λ as (see [6] for details)

dΛ̂P (t) =

∑n

i=1 SPi(t)dΛPi(t)∑n

i=1 SPi(t)
. (2)

Note that the population survival estimate depends on the sample only as far

as the individuals are determined by their demographic covariates, and is inde-

pendent of the actual survival of the patients. The estimator (1) is referred to

as the Ederer I estimator.

2.2 Net survival

The net survival is defined as the survival due to the excess hazard λE alone, i.e.

it is a measure defined in the hypothetical world where the population hazard λP

does not act. For a cohort of individuals with possibly different excess hazards

λEi, net survival equals

SE(t) =
1

n

n∑

i=1

SEi(t) =
1

n

n∑

i=1

exp{−

t∫

0

λEi(t)dt}.

Pohar Perme et al. [6] introduced a new estimator of net survival estimator

(subsequently denoted as PP estimator) that consistently estimates the desired

population value. The method estimates the cumulative hazard function as

Λ̂E(t) =

∫ t

0

∑n

i=1 dN
∗

i (u)∑n

i=1 Y
∗

i (u)
−

∫ t

0

∑n

i=1 Y
∗

i (u)dΛPi(u)∑n

i=1 Y
∗

i (u)
, (3)

where dN∗

i (t) = dNi(t)/SPi(ti) and Y ∗

i (t) = Yi(t)/SPi(t).

The other approach that can ensure consistent estimation of net survival is to

fit a multivariate model so that individual net survival ŜEi(t) can be predicted

for each patient at each follow-up time, and the average of these quantities is

then used as the estimate of the overall net survival.
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3 Estimators in the presence of informative cen-

soring

Let T ∗

i denote the actual time to death for each patient and Ci the time to

censoring, so that the observed time is Ti = min(T ∗

i , Ci). In this paper we dis-

tinguish between two sources of censoring. We assume that the initially planned

follow-up time, referred to as the potential follow-up time and denoted by Gi

is given for all patients. In the usual case, the potential follow-up time is the

difference between the closing date of the study and the diagnosis date of each

individual. The actual censoring time is given by Ci = min(C̃i, Gi), where C̃i is

the time to censoring due to any reason but the end of the study. Throughout

this work, we shall assume C̃i to be independent of Zi and Ti, whereas Gi and

Ti may depend on Zi and thus introduce informative censoring. A practical

reason for this could be the dependence of the distribution of covariates Zi on

diagnosis date, which in turn determines Gi if the closing date is common for all

individuals. Both, Ederer I and the PP estimator assume non-informative cen-

soring. The effect and importance of informative censoring when estimating net

survival has recently been studied in [11], where the screening and inverse screen-

ing procedures are presented as a part of informative censoring mechanism. This

section explores the possible approaches if the assumption of non-informative

censoring does not hold.

3.1 Simulated example

The effect of informative censoring is first illustrated by a simplified example.

The cohort under study consists of two equally sized age groups (35 and 55

years, 2500 patients each, all males). All the patients from the older group

are diagnosed in 1970, whereas in the younger group, half of the individuals

are diagnosed in 1970 and the other half in 1980. If the follow-up period for

all patients ends in 1990, this scenario generates informative censoring. The

younger patients have a probability 0.5 to be censored after 10 years, while all

the older patients, who have a considerably higher hazard of dying both due to

cancer and also due to other causes, stay in the sample for 20 years.

The purpose of this example is to show how this censoring mechanism affects

the estimators, i.e. how the estimated curves on the censored data compare

with the ideal case where all individuals were followed up for the entire period
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of 20 years.

When estimating either relative survival ratio or net survival within the two

age-groups (dotted lines in Figure 1), any estimator results in the same value

since the two groups are homogeneous, and the introduced censoring has no

effect beside some random variation (the curves in censored and uncensored case

overlap in our case, so only the uncensored case is plotted). On the contrary,

differences arise when considering the overall results. Both the Ederer I (1)

and the PP estimator (3) in the censored case underestimate their respective

values in the uncensored case - the curves start diverging after 10 years, when

the censoring mechanism stats acting and causes the older group to be over

represented in the sample.
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Figure 1: Performance of existing estimators in presence of informative censoring
(simulated data) : a) Ederer I and Hakulinen estimator of relative survival
ratio, b) PP estimator of net survival. The thin grey curves denote the 95 %
confidence intervals for the uncensored case; the dotted curves represent the
estimates within the age subgroups.

3.2 The Hakulinen estimator

If censoring is informative, the Kaplan-Meier estimate of the observed survival

ŜO(t) is biased and hence the relative survival ratio estimated by the Ederer I

method (1) is biased as well. Realizing this fact, a correction of this estimator

was proposed by Hakulinen [7] that aims to introduce a similar bias in the

denominator of (1), by allowing each individual to contribute to the overall
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curve only up to his potential follow-up time. The population cumulative hazard

function of the Hakulinen estimator is given by

dΛ̂H
P (t) =

∑n

i=1 Y
H
i (t)SPi(t)dΛPi(t)∑n

i=1 Y
H
i (t)SPi(t)

, (4)

where

Y H
i (t) =

{
I(t ≤ Ci) if δi = 0

I(t ≤ Gi) if δi = 1

The Hakulinen estimator was designed for the situation where no patients are

censored before the end of the study, i.e. Ci = Gi. Such a situation may be

realistic in many cancer registries where follow-up is practically complete. In

such situation, Y H
i (t) = I(t ≤ Gi) and thus all individuals are included in

calculation (4) until their potential follow-up time.

If G does not depend on covariates, the indicator YH has the same distribution

for all individuals i and its expected value cancels out in equation (4), so that

the Hakulinen and Ederer I estimate the same quantity. Since the Kaplan-

Meier estimator of the observed survival part in the numerator of the relative

survival ratio (1) is consistent under non-informative censoring, both estimators

are consistent.

If G depends on covariates, the Kaplan-Meier estimator of SO in the numerator

of equation (1) is biased, i.e. the expected value of the estimates obtained on

the censored and uncensored data is no longer equal. The Hakulinen estimator

of SP aims to diminish the subsequent bias of the ratio by introducing a similar

bias into the denominator. As simple algebra shows, in order to entirely remove

the bias, we should have:

bias in the numerator = SR(t)× bias in the denominator. (5)

There is no reason why equation (5) would be true and no general scenarios can

be found to ensure the Hakulinen estimator to work perfectly. In particular, the

bias in the numerator depends on the effect of any covariate on excess hazard,

while the bias introduced in the denominator depends only on the age, sex and

diagnosis year of the patients. The two biases may even be of opposite signs,

which would mean that the Hakulinen estimator is even more biased than Ederer
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I.

To understand why the Hakulinen estimator nevertheless seems to have at least

partially desired effect, consider again our simplified example presented in Fig-

ure 1. Due to informative censoring, the observed survival calculated with the

Kaplan-Meier method in the numerator is underestimated (Figure 2a), since the

older patients are over represented in the sample after 10 years. But since the

older patients are also over represented when calculating the general popula-

tion survival at the same time points, the denominator contains a similar bias

(Figure 2b) and the ratio (the Hakulinen estimate) in Figure 1a is closer to the

value on the uncensored data set than the Ederer I estimate.
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Figure 2: Differences between estimators of the numerator and denominator in
the relative survival ratio (simplified example, simulated data) : a) Observed
survival, numerator, b) Population survival, denominator. The dotted curves
represent the estimates within the age subgroups.

A further problem of the Hakulinen estimator is its performance under non-

informative censoring. While the situation with no censoring before the study

end may be common in cancer registry data, we can expect many individuals to

be lost to follow-up in any other long term study where relative survival could

also be of use. Consider the situation where all patients have the same poten-

tial follow-up time (Gi = τ), but are subject to non-informative censoring with

censoring times C̃i equally distributed for all individuals. The Kaplan-Meier

estimator produces an unbiased estimator of the numerator, but the correction

in the denominator of the Hakulinen estimator still changes its value. The be-

haviour of the Hakulinen estimator under non-informative censoring is presented
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in Figure 3. We considered a subset of patients diagnosed with thyroid cancer

between 1970 and 1990 with 20 years complete follow-up time (actual data from

Cancer Registry of Slovenia) and censored them with exponentially distributed

censoring times C̃i (C̃i ∼ exp(λ)). The differences between the Ederer I and the

Hakulinen estimator increase with increasing proportion of randomly censored

patients.
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Figure 3: Effect of non-informative censoring on differences between the Ederer
I and the Hakulinen estimator (data from Cancer registry of Slovenia, thyroid
cancer)

To understand how the indicator Y H
i (t) changes the estimator, we calculate

its expected value at a given time t. An individual can either still be at risk

(Ti ≥ t, Ci ≥ t) or already out of the risk set due to death (Ti ≤ Ci, Ti < t)

or censoring (Ci < Ti, Ci < t). In all cases except the last, the value of the

indicator Y H
i (t) equals 1. The expected value of the indicator is thus

E(Y H
i (t)) = P (Ti ≤ Ci, Ti < t,Ci < t) + P (Ci ≥ t). (6)

It is clear that the expected value of this indicator depends both on the censoring

and the survival time distribution of an individual. Therefore, if the survival

time distribution differs among individuals (this could be either due to different

excess hazards or different population hazards), the expected values of Y H
i differ

and dΛ̂H
P (t) does not estimate the true dΛP (t).

The Hakulinen method thus always introduces a bias in the estimator. If cen-

soring is informative, this might help in reducing the bias of the ratio, but if

censoring is non-informative and the numerator estimated without bias, the
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ratio is biased again.

3.3 Weighted estimators

We propose a general solution to the problem of informative censoring applicable

both to the Ederer I estimator for the relative survival ratio and to the PP

estimator for the net survival. If censoring is non-informative, the time to death

and the time to censoring are independent, the patients lost from the sample due

to censoring are a random subsample and thus do not introduce bias to either of

the estimators. But if censoring times Gi depend on a covariate, the subgroup

of individuals that are still at risk at a certain time point no longer represents

a random sample of those who would be at risk if there were no censoring. A

possible solution is therefore to appropriately weight the individuals, i.e. to

use weights proportional to 1/SGi(t−), where SGi(t−) = P (Gi ≥ t), and thus

ensure that the sample still at risk has the desired distribution. As in [6], the

weights follow the idea of inverse probability weighting [12, 13, 14] and are

used to weight both the at risk indicator Yi and the number of events on each

individual dNi.

3.3.1 Weighted relative survival ratio estimator

In the case of Ederer I estimator (1), the denominator ŜP (t) depends only

on the sample distribution at the time of diagnosis and is thus not affected

by informative censoring. Therefore, only the numerator ŜO(t) gets affected

and the proposed correction is introducing the inverse probability of censoring

weights to the Nelson-Aalen estimator of the observed cumulative hazard:

dΛ̂w
O(t) =

∑n

i=1
dNi(t)
SGi(t−)∑n

i=1
Yi(t)

SGi(t−)

. (7)

The corrected Ederer I estimator is then the ratio of the survival function Ŝw
O(t)

that corresponds to (7) and the population survival corresponding to the cumu-

lative hazard in (2).
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3.3.2 Weighted net survival estimator

In the PP estimator, the weights using the population survival function in the

cumulative hazard function estimate get multiplied by the weights that correct

for informative censoring:

Λ̂w
E(t) =

∫ t

0

∑n

i=1
dNi(u)

SPi(t)SGi(t−)∑n

i=1
Yi(u)

SPi(t)SGi(t−)

−

∫ t

0

∑n

i=1
Yi(u)

SPi(t)SGi(t−)dΛPi(u)
∑n

i=1
Yi(u)

SPi(t)SGi(t−)

, (8)

3.3.3 Weights calculation

Note that SGi has to be evaluated at t−, the time just before t, but this is not

important in the case of SPi since it is continuous. Also, the weights SGi are

not given and must be estimated from the sample. Nevertheless, an important

advantage over other applications of inverse probability weighting (see e.g. [12,

13, 14]) is that the Gi are determined with the time of diagnosis and are thus not

affected by the patient’s actual survival time, which simplifies the estimation.

Many approaches can be used to estimate SGi, in simple cases Kaplan-Meier

estimates within subgroups of patients or the Cox model may suffice, but more

flexible models like the Aalen model [15, 16, 17] may be needed in general [14].

Since the censoring indicator of the event times Gi equals 1 for all individuals,

other approaches from outside of the survival field can be used as well.

4 The performance of the estimators under cen-

soring

In this section we turn to studying the possible bias of Ederer I and PP method

under different patterns of censoring and the performance of the methods that

try to correct this bias (Hakulinen, weighted Ederer I and weighted PP). As a

basis for our simulations, we use the organization of the scenarios proposed in

[7], the fundamental paper on the effect of informative censoring in the relative

survival field. As a guidance to choosing realistic values of hazard, we use the

Slovenian data for thyroid and melanoma cancer for the period of diagnosis

between 1970 and 1990: the excess hazard strongly depends on patient age in
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thyroid cancer, but is only slightly lower for younger patients with melanoma.

Both primary sites were presented as examples of informative-censoring affected

cancers in [7]. We fitted an additive model [2] with age as a covariate and a

piecewise constant baseline function to the real data and then, for the purpose

of simulation, generated data from this model.

With both cancer sites, excess hazard is higher for older patients, but the ef-

fect is much stronger with thyroid cancer (coefficient equal to 0.08 per year as

compared to 0.01 per year for melanoma). In 20 years of follow-up, the baseline

hazard function drops from 0.17 to 0.03 for melanoma and from 0.14 to 0.02 for

thyroid cancer. All the simulations are performed on samples of size n = 2000

and 500 simulation runs. The simulated patients are all male, half of them

are 35 years old and half 55 years old at the time of diagnosis; the population

mortality hazards are taken from Slovenian population tables for the relevant

period.

Following Hakulinen’s study, we introduce two patterns for generating the di-

agnosis date:

W0: 5% of the patients are admitted each year over a period of 20 years (1970–

1989),

W2: 3.1% of the patients are admitted during the first year, each year this

percentage is increased by 0.2% (3.3%,3.5%,...,6.9%).

With a common closing date of the study in 1990, the chosen patterns determine

potential censoring times. If the pattern is not equal for both age subgroups,

such censoring is informative. We use three different scenarios - the diagnosis

of both age groups is determined with W0 (denoted as W0/W0), the 55 age

group is admitted with pattern W2 (W0/W2) and the 35 age group is admitted

with pattern W2 (W2/W0). In [7], the data generation was simplified so that

neither excess nor population hazard changed with diagnosis year. To obtain

comparable results using the yearly Slovenian population mortality tables for

data (that change with calendar year), we invert the situation and let all patients

be diagnosed on the same date (in 1970). The closing date is then not common

for all individuals, but we set the potential follow-up times so that the censoring

schemes stay the same (e.g. W2 denotes the scenario in which 6.9% of the

patients are followed-up for one year, 6.7% for two, etc.). In this way, scenarios

1-3 are obtained. The actual dependence on age and year of diagnosis that

arises in these scenarios is described in Table 1.
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(Table 1)

In each simulation run, a data set is generated using the described model, with

follow-up equal to 20 years for all patients. The estimates given by the Ederer

I and PP method on such data set are referred to as reference values. Subse-

quently, the data set is censored using one of the scenarios and the values are

recalculated. The weights for the proposed weighted versions of the Ederer I

and the PP method are calculated using the Kaplan-Meier estimate on poten-

tial follow-up times in each of the age groups. Simulations are performed using

relsurv R package [18, 19].

The results are reported in Table 2 and Table 3. All values are given as

100(Ŝcens(t) − Ŝref (t)), where t = 5, 10, 15 or 20 years, Ŝref denotes the es-

timates on the uncensored data set and Ŝcens on the censored one. The results

of scenarios 2 and 3 are those that are comparable to [7], but differences may

arise due to the fact that our patients are observed 20 years later (complete

Slovenian data are not available before 1970) and thus both cancer survival

and population survival follow different trends. For better readability of the

provided tables, the differences that are significant at 0.05 level (using the Bon-

feronni correction within each curve) are denoted with a star.

Scenario 1 in Table 2 is the only scenario with non-informative censoring and

bias is negligible with all the estimators. Scenarios 2 and 3 introduce censoring

dependent on age. The effect is of equal size in both scenarios but in opposite

directions, hence the biases are comparable in size and opposite in sign. In

scenario 2, the older patients are censored earlier, so that the overall values

approach those of the younger group and are thus overestimated. The effect is

much more pronounced in the case of thyroid cancer with a stronger age effect.

Age affects both the excess hazard and the population hazard, and while relative

survival ratio depends on both, only the excess hazard determines the difference

between the age groups in case of net survival. Therefore, the bias of the PP

estimator is considerably smaller.

In scenarios 4–6 (Table 3), censoring also depends on diagnosis year. Since the

diagnosis year in our simulation only affects the population hazard component

and the excess hazard, the bias of the net survival estimator remains the same

as in scenarios 1–3. Contrariwise, relative survival ratio estimation gets an addi-

tional “source” of informative censoring. The bias due to informative censoring
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is thus present even in scenario 4: the patients who are diagnosed later and have

a lower population hazard are censored earlier and the Ederer I estimator thus

underestimates the true value.

In scenario 5, the older patients are censored earlier and the net survival thus

gets overestimated - it approaches the survival of the young. The difference be-

tween the reference values estimated by the PP method and the values obtained

on the censored data set is thus positive. The effect is again more pronounced in

the case of thyroid cancer which has a stronger age effect. The relative survival

ratio is now affected by two sources of informative censoring acting in opposite

directions - while the net survival is overestimated, the population contribution

gets underestimated since patients with lower population hazard (diagnosed

later) get censored earlier. The two effects practically cancel out in the case

of skin melanoma, but the bias persists in thyroid cancer, where net survival

differences are larger. In scenario 6, both sources of informative censoring act

in the same way on the relative survival ratio and the bias in Ederer I estimator

is the highest. As expected, the magnitude of the bias of the PP estimator is

similar to that in scenario 5, only the sign is changed.

We now turn to the results given by estimators correcting for informative cen-

soring. In scenarios 4–6, the Hakulinen estimator seems to offer a reasonable

correction and is, even though sometimes still significantly different from the

true value, closer to it than the Ederer I estimator.

The weighted Ederer I estimator performs perfectly in scenarios 2–3, all the

bias is due to age affecting the censoring pattern and this is exactly what we

accounted for with the weights. The Hakulinen estimator performs worse - it

removes some but not all of the bias of the Ederer I estimates. Scenarios 4–6

are more problematic, since one cannot correct for the fact that the patients

with lower population hazard were censored - no data is available on any repre-

sentative of the censored groups after they are censored. In these scenarios the

Hakulinen estimator seems to offer a better guess.

This problem does not arise with the weighted PP estimator - since net survival

does not change with diagnosis year, the correction is perfect in all cases. This

is of course not true in general and the assumption of no effect of diagnosis year

on the excess hazard was used in our simulations only to simplify the scenarios

in order to be able to track the cause of the bias. In an additional simulation

(results not reported), where we introduced also an effect of the diagnosis year

on the excess hazard, the weighted estimator was not be able to entirely cor-
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rect the bias, since no information was available beyond the last observation

date. This is not a problem of the estimator, any extrapolation beyond the last

observation date is just a guess.

In our simulation results, the bias exceeds 2% only after 15 or 20 years and only

with thyroid cancer which has a rather extreme effect of age (and diagnosis year)

on the excess hazard. Bias shall be the highest, when all sources of informative

censoring work in the same direction. Since relative survival ratio also depends

on population hazard differences, the bias of the PP estimator in these most

extreme examples can never be as large as with the Ederer I estimator.

(Table 2)

(Table 3)

5 Assumptions

When a correction for informative censoring is necessary, one should above all

be careful about the assumptions implied by the methods. We shall compare

three different options of correcting:

• age-standardized estimator [20, 21] : calculate either Ederer I or the PP

estimator in subgroups of patients (defined with respect to age) and then

calculate the weighted average, with weights determined by subgroup sizes

at time 0.

• weighted estimator: estimate SGi(t) for each individual and use it as a

weight in the Ederer I or the PP estimator.

• multivariate model: use a multivariate model to estimate SEi(t) for each

individual and average it to estimate the net survival. Analogously, to get

an estimate of the relative survival ratio, estimate individual SOi(t) and

average the values to calculate the numerator of the Ederer I estimator.

In the simplified scenarios of the previous section, only two values of the age

variable were possible. In this case, the age-standardized estimator and the

weighted estimator that uses the Kaplan-Meier estimates of SGi in each group

give very similar results. The results are not identical, but the assumptions are.
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Both assume that patients that are censored within a group would have the

same value (of net survival or relative survival ratio) as those that remained in

the risk set.

In a more realistic example, where patients’ age can vary more, both methods

assume that patients who were censored within a subgroup would not change

the average net survival or relative survival ratio if they remained at risk.

Suppose now that an age defined subgroup of patients consist of both men and

women, and that women have a lower excess hazard and hence a better net

survival and relative survival ratio.

Further, suppose that half of these women and no men are censored after five

years of follow-up. If both methods correct for informative censoring only on the

level of the age subgroup, they both make the same mistake - after five years,

the value of the estimate becomes closer to that of men and thus underestimates

the true value. The correction is thus unbiased only if the subgroups are chosen

so that either all the patients within each subgroup have the same net survival

or relative survival ratio, or all patients within a subgroup have the same cen-

soring pattern. The age-standardized option is therefore often too coarse and

a model should be used either for the observed (excess) hazard (multivariate

model option) or the censoring experience (the weighted estimator option).

There are some further important differences between the multivariate and the

weighting option. We first consider the option with no censoring. In this case,

no correction with additional weighting is needed in either the PP or the Ederer

I estimator, but if the multivariate model is chosen to estimate net survival,

it has to be flexible enough to estimate properly the effects of covariates in all

non-homogeneous subgroups. Similarly, when dealing with simple patterns of

informative censoring, it is probably easier to model the censoring experience

and use it as weights in the estimator.

The other main difference between the alternatives arises when the entire group

of patients is censored before the end of the study. In this case, the assumptions

of the two methods are very different. The multivariate model assumes that

the difference between the groups would stay the same as it was before the

time of censoring - if a whole group is lost due to censoring, the multivariate

model predicts that the hazard remains the same for the rest of the follow-up

period. In the case of the weighted estimator, the group is simply excluded

(no representative of the group is left to be weighted), the weighted estimators

thus assume that the subgroup was a random subgroup with respect to the net
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survival or relative survival ratio.

As an example of a situation where the estimated relative survival ratio using

multivariate model and weighted estimators will differ, we consider scenario

4, with patients entering the study throughout the 20-year period, but with a

common final follow-up date. The patients with the lowest population hazard

were thus followed for the shortest period. The problem of this informative

censoring is that if subgroups are formed with respect to diagnosis year, all

patients within each subgroup have the same maximum potential follow-up.

Since no patients from a subgroup are left after a certain time, the weights apply

to no one, and the weighing does not affect the estimator at all. In other words,

knowing that the population hazard decreases with calendar year, we know

that the relative survival ratio will be underestimated by our estimator. On the

other hand, if a multivariate model is used to model the observed survival, the

estimate of the relative survival ratio depends on the assumption of the model

- if a time-fixed effect of diagnosis year has been assumed, we assume that the

hazard ratio between groups diagnosed in different calendar years remains the

same even after some groups are no longer observed. This may seem like a more

reasonable assumption, but one must keep in mind that any assumption after

the end of follow-up is unverifiable and should in fact best be avoided.

6 Informative censoring on real data examples

In this section, we study the importance and the impact of informative censoring

in real data. The Slovene data for thyroid and melanoma cancer are used. To

study data consistent with our simulations, we use a subsample involving 925

and 453 patients aged under 65 years, diagnosed with malignant melanoma

of skin and malignant neoplasm of thyroid gland, respectively. The patients

are diagnosed between 1.1.1970 and 31.12.1989 and followed up until 1.1.1990.

The estimators obtained on these data and the corrections using our proposed

method are compared to the reference value calculated with complete follow-up.

i.e. 20 years for everyone. The weights were calculated using the Kaplan-Meier

estimator in two age groups (below 45 years and 45-65 years). Survival values

obtained by all examined estimators are reported in Table 4.

(Table 4)
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The resulting values on the censored data set behave similarly for the relative

survival ratio as for the net survival. The estimators that do not take into

account the informative censoring (Ederer I and PP) underestimate the values

obtained when no censoring is present, but it takes quite a long period of time

before these differences may become substantial. The Hakulinen estimator re-

duces the difference observed when estimating the ratio, but not as much as the

weighted Ederer I option. But even the weighted versions as our best attempt

to correct for the informative censoring still remain quite far from the results on

the uncensored data, implying that the bias due to the improvement of survival

in the years beyond 1990, for which we have no information in the censored data

set and we thus cannot correct for, is substantial.

7 Discussion

The issue of informative censoring has been present in the relative survival field

for many years, in fact, it was the main reason for introducing the Hakulinen

estimator. As we have shown in this paper, the corrected relative survival

ratio estimator obtained with this method is often reasonable in practice, but

only rarely perfect. It diminishes the bias by an arbitrary degree that cannot

be relied upon and there exists no clear set of assumptions that would ensure

unbiasedness. Furthermore - the estimator fails in the simplest scenario when

censoring exists but is non-informative and there exists no guidance when the

Hakulinen estimator can be trusted.

We propose a new method for correcting both the relative survival ratio and

the net survival estimator. The method requires the same information as the

Hakulinen’s approach, i.e. the knowledge of potential follow-up times for all

patients, but ensures consistent results.

Excluding the Hakulinen estimator from the set of options, modelling is required

to ensure consistency, and one may choose between modelling the survival or

the censoring probability. We believe that the second option may usually be

simpler in practice. In particular, when using the net survival, the multivariate

model implies modelling in the relative survival setting, whereas the weighting

option only requires a classical survival model, so more options to fit a flexible

model are readily available.
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The other message of this paper, that has been somehow obscured by the sim-

plified examples in the [7], is that in practice the bias usually consists of two

parts - the bias due to informative censoring that can be corrected, and the one

that arises if the entire group of patients is censored beyond a certain point. In

the latter scenario, extrapolation beyond the final observation date is required,

so any corrections are subject to pure guessing. If either the population hazard

in a certain country or the disease-specific hazard changes considerably with

the year of diagnosis, this bias may prevail, so the usefulness of correcting for

informative censoring is highly questionable.

To conclude, we believe that analysis of data with large differences in the po-

tential follow-up time requires un-testable assumptions, which should be taken

into account when interpreting the results.
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Table 1: Simulation scenarios

Scenario 35/55 Age Diagnosis year

1 W0/W0 independent independent
2 W0/W2 older patients censored earlier independent
3 W2/W0 younger patients censored earlier independent
4 W0/W0 independent later diagnosis censored earlier
5 W0/W2 older patients censored earlier later diagnosis censored earlier
6 W2/W0 younger patients censored earlier later diagnosis censored earlier
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Table 2: Differences between reference values (uncensored data with complete 20
years follow-up time, estimated by the Ederer I for relative survival ratio or PP
method for net survival) and values obtained by Ederer I, Hakulinen, weighted
Ederer I, PP method and weighted PP method using censored data with hetero-
geneous follow-up time due to common entry to the study and different study
end.

Estimator Skin melanoma Thyroid cancer
5 years 10 years 15 years 20 years 5 years 10 years 15 years 20 years

Scenario 1
Ratio

Ed1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 -0.1
Hak 0.0 0.1 0.1 -0.1 0.0 0.0 0.0 -0.1
wEd1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 -0.1

Net
MPP 0.0 0.1* 0.1 0.1 0.0 0.0 0.0 -0.1
wMPP 0.0 0.1* 0.1 0.1 0.0 0.0 0.0 -0.1

Scenario 2
Ratio

Ed1 0.1* 0.4* 0.9* 1.8* 0.3* 0.9* 1.8* 3.2*
Hak 0.1* 0.2* 0.2* 0.3 0.2* 0.5* 0.8* 0.8*
wEd1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0

Net
MPP 0.1* 0.2* 0.2* 0.4* 0.2* 0.6* 1.1* 1.7*
wMPP 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0

Scenario 3
Ratio

Ed1 -0.1* -0.4* -0.8* -1.7* -0.2* -0.9* -1.9* -3.5*
Hak -0.1* -0.1* -0.1 -0.2 -0.2* -0.5* -0.9* -1.2*
wEd1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2

Net
MPP -0.1* -0.1* -0.1 -0.1 -0.2* -0.5* -1.1* -1.6*
wMPP 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.2
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Table 3: Differences between reference values (uncensored data with complete
20 years follow-up time, estimated by Ederer I for relative survival ratio or PP
method for net survival) and values obtained by Ederer I, Hakulinen, weighted
Ederer I, PP method and weighted PP method using censored data with het-
erogeneous follow-up due time to delayed entry to the study and common study
end.

Estimator Skin melanoma Thyroid cancer
5 years 10 years 15 years 20 years 5 years 10 years 15 years 20 years

Scenario 4
Ratio

Ed1 0.0 -0.1* -0.3* -0.8* 0.0 -0.1* -0.6* -1.4*
Hak 0.0 0.0 0.2* 0.3 0.0 0.0 0.1 0.4*
wEd1 0.0 -0.1* -0.3* -0.8* 0.0 -0.1* -0.6* -1.4*

Net
MPP 0.0 0.0 0.2* 0.3 0.0 0.0 0.0 0.2
wMPP 0.0 0.0 0.2* 0.3 0.0 0.0 0.0 0.2

Scenario 5
Ratio

Ed1 0.1* 0.2* 0.3* 0.4* 0.2* 0.7* 1.2* 1.5*
Hak 0.1* 0.1* 0.1 0.2 0.2* 0.5* 0.9* 1.1*
wEd1 0.0 -0.1* -0.6* -1.2* 0.0 -0.2* -0.6* -1.7*

Net
MPP 0.1* 0.1* 0.1 0.3 0.2* 0.6* 1.1* 1.6*
wMPP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scenario 6
Ratio

Ed1 -0.1* -0.5* -1.3* -2.9* -0.3* -1* -2.5* -5*
HaK 0.0 -0.1* -0.1 -0.4* -0.2* -0.5* -0.8* -1*
wED1 0.0 -0.1* -0.4* -1.3* 0.0 -0.1* -0.5* -1.5*

Net
MPP 0.0 -0.1* -0.1 -0.4* -0.2* -0.5* -1* -1.6*
wMPP 0.0 0.0 0.1 -0.2 0.0 0.0 0.1 0.2
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Table 4: Real data example from Slovenian Cancer registry data: estimated
survival values for uncensored data with complete 20-years follow-up period
and censored data with heterogeneous follow-up time due to common study end
on 1. 1. 1990.

Primary site and years of follow-up Relative survival ratio Net survival

Follow-up time Complete Censored Complete Censored
Method Ed1 Ed1 Hak wEd1 PP PP wPP

Skin melanoma

5 years 57.3 56.7 56.7 56.7 56.9 56.2 56.2
10 years 49.8 48.7 48.8 48.7 49.0 47.9 47.8
15 years 48.4 48.7 48.7 48.4 46.9 47.2 47.2
20 years 49.1 44.5 44.3 45.2 47.3 42.6 43.9

Thyroid cancer

5 years 73.0 71.6 71.7 71.7 72.3 70.9 71.0
10 years 68.7 66.0 66.4 66.4 66.8 64.5 64.8
15 years 65.2 62.4 64.1 63.0 61.1 59.0 59.3
20 years 64.2 44.6 49.7 53.5 57.2 34.0 43.0
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